期刊文献+

高Q值腔中有时序差注入的二能级原子的量子信息传递的操纵

Manipulation of Quantum Information Transferring for Two-level Atoms Injected with Different Time Order in High-Q Cavity
下载PDF
导出
摘要 在高Q值腔中,原子与光场发生强相互作用,腔中的光子、原子作为信息的载体在耦合过程中所携带的信息随时间不断变化,从而实现量子信息的传递.参考Haroche研究小组的原子在超导微腔中的实验,利用J-C模型和包括系统耗散的Master方程,借助于数值计算方法,求解了系统中原子的约化密度矩阵元的微分方程组,并给出了原子基态的密度矩阵元随时间演化的曲线.研究了当原子的注入有时序差时,腔场的损耗对原子基态密度矩阵演化的影响.研究结果表明对两个顺序注入的原子,通过对第2个原子的注入时刻的调控,能够操控第1个原子通过腔场传递给第2个原子的量子信息,从而有效地实现对原子的量子信息传递的操纵. The system of two atoms at different injection time coupled with the cavity field is studied. Starting from the J-C Model and Master equation involving the both cavity and atomic dissipations, a set of differential equations for reduced density matrix of atom and field respectively was derived and numerically solved. To obtain the atomic evolutions of lower energy level, the experimental parameters of Harocheg group in high-Q superconductive micro- wave cavity were refened to. It is found that the evolution of probability density of ground state of atom is evidently affected by the cavity damping. It shows that for two atoms injected with different time order, by controlling injected time of second atom, the quantum information transferring of first atom to second atom can be manrpulated. In this wag manrpulated quantum information transferring of atoms is effectively.
出处 《广东工业大学学报》 CAS 2008年第3期1-5,共5页 Journal of Guangdong University of Technology
基金 国家973资助项目(2006CB21606) 湖北省自然科学基金资助项目(2007aba095)
关键词 腔量子电动力学(CQED) Master方程 时序差 量子信息的传递 cavity quantum electrodynamics(CQED) Master equation time order difference quantum informa tion transferring
  • 相关文献

参考文献12

  • 1Matre X, Hagley E, Nogues G, et al. Quantum Memory with a single photon in a cavity[J]. Phys Rev Lett, 1997, 79 : 769-772.
  • 2Rauschenbeutel A, Nogues G, Osnaghi S, et al. Coherent operation of a tunable quantum phase gate in cavity QED [J]. Phys Rev Lett, 1999, 83: 5166-5169.
  • 3Zheng Shi-biao. Quantum-information processing and multiatom-entanglement engineering with a thermal cavity [ J ]. Phys Rev A, 2002, 66: 060303-1-060303-4.
  • 4Unruh W G. Maintaining coherence in quantum computers [J]. Phys Rev A, 1995, 51: 992-997.
  • 5Sleator T, Weinfurter H. Realizable universal quantum logic gates[J].Phys Rev Lett,1995,4, 4087-4090.
  • 6Raimond J M, Brune M, Haroche S. Colloquium Manipulating quantum entanglement with atoms and photons in a cavity[J]. Rev Mod Phys, 2001,73, 565-582.
  • 7Quang T, Knight P L, Buzek V. Quantum collapses and revivals in an optical cavity[J]. Phys Rev A, 1991, 44, 6092-6096.
  • 8Peixoto de Faria J G, Nemes M C. Dissipative dynamics of the Jaynes-Cummings model in the dispersive approximation: Analytical results[J]. Phys Rev A, 1999, 59, 3918- 3925.
  • 9Doherty A C, Parkins A S, Walls D F,et al. Effects of motion in cavity QED [ J ]. J Opt B: Quantum Semiclass Opt. 1, 1999,4: 475-482.
  • 10Brune M, Schmidt-Kaler F, Maali A, et al. Quantum Rabi Oscillation: A direct test of field quantization in a cavity [J]. Phys Rev Lett, 1996, 76, 1800-1803.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部