期刊文献+

适应性粒子群寻优算法 被引量:14

Adaptive particle swarm optimization algorithm
下载PDF
导出
摘要 社会性的群体寻优是秩序与混沌之间的平衡,适应性微粒群寻优算法(APSO)是在标准PSO上添加反映适应性的随机项,并引入小概率因子,使微粒飞行到粒子群的中心,平衡秩序和随机两个行为.APSO算法的本质是在有序的决策中始终引入随机的、不可预测的决定,从而使得寻优的决策尽可能模拟社会性群体寻优的复杂行为.典型复杂函数优化的仿真结果表明,APSO算法具有较好的稳定性. The social behavior of swarm is a balance between complete order and total chaos. Therefore, the level of randomness in the group is an important factor. Firstly, the concept of "chaos" is introduced to the particle swarm optimization(PSO) by adding a durative random item representing principle of adaptability of swarm intelligence. Then, particles with small probability will fly to the center of the swarm, which is introduced to balance the order and random behaviour. The essence of adaptive particle swarm optimization (APSO) is that the inscrutable decision on the rational behavior is introduced to order decision, and the complex behaviour of socical swarm is simulated. Experimental simulations show that the proposed method can improve the stability of convergence effectively.
出处 《控制与决策》 EI CSCD 北大核心 2008年第10期1135-1138,1144,共5页 Control and Decision
基金 重庆市自然科学基金项目(CSTC2006BB2238)
关键词 粒子群算法 适应性 随机 PSO Adaptive Random
  • 相关文献

参考文献10

  • 1Kennedy J, Eberhart R. Particle swarm optimization [C]. Proc IEEE Int Conf on Neural Networks. Perth, 1995 : 1942-1948.
  • 2吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:450
  • 3赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 4Make M Millonas. Swarms, phase transtions and collective intelligence [M]. Massachusetts: Addison Wesley Reading, 1994.
  • 5Shi Y, Eberhart R. A modified particle swarm optimizer [C]. IEEE World Congress on Computation Intelligence. Anchorage, 1998: 69-73.
  • 6谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 7汪镭,康琦,吴启迪.基于形式化描述的逻辑分层延迟PSO算法及应用[J].控制与决策,2005,20(6):611-615. 被引量:2
  • 8Xie X E, Zhang W J, Yang Z L. A dissipative particle swarm optimization [C]. Proc IEEE Congress on Evolutionary Computation. Honululu, 2002, 2:1456- 1461.
  • 9Ratnaweera A, Halgamuge S K, Watson H C. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 240-255.
  • 10Mahfouf M, Chen M, Linkens D A. Multi-objective optimal design of alloy steels using adaptive weighted particle swarm optimisation [C]. Proc of Parallel Problem Solving from Nature-PPSN V Ⅲ. Birmingham, 2004 : 762-771.

二级参考文献56

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 2[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 3[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 4[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 5[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 6[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 7[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 8[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 9[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 10[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.

共引文献959

同被引文献114

引证文献14

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部