期刊文献+

基于满意优化的氧化铝生料浆调配方法 被引量:3

Satisfactory optimization of raw slurry arrangement for process of alumina production
下载PDF
导出
摘要 提出了基于多目标满意优化的生料浆调配智能优化方法.该方法以满意度函数反映决策者对性能指标的评价,以综合满意度函数反映决策者对多目标协调的要求,构建氧化铝生料浆调配的满意优化模型,并通过自适应调整交叉概率和变异概率的改进遗传算法求解满意优化问题.所得优化结果更能反映决策者对实际工艺指标的评价,大幅度提高计算效率,减少生料浆质量指标的波动.基于工业运行数据的计算结果表明了该方法的有效性和实用性. A satisfactory optimization approach is proposed for the raw slurry arrangement in the process of alumina production. A satisfactory degree function based on the satisfaction degree of the decision-maker is defined to evaluate the performance of optimal objectives, and a synthesis satisfactory degree function is constructed to evaluate optimization results. The satisfactory optimization problem is solved by an improved genetic algorithm where the crossover rate and mutation rate are adjusted according to fitness function. The optimization results show that the computational efficiency is increased greatly, the composition fluctuation in mixed raw slurry is decreased a lot, and more satisfactory performances are achieved than that of traditional methods. The computation results based on the industrial data show the effectiveness and practicality of the proposed approach.
出处 《控制与决策》 EI CSCD 北大核心 2008年第10期1168-1172,共5页 Control and Decision
基金 国家自然科学基金项目(60634020,60574030,60804037) 教育部博士点基金项目(20050533016)
关键词 生料浆调配 满意优化 满意度函数 改进遗传算法 Raw slurry arrangement Satisfactory optimization Satisfactory degree function Improved genetic algorithm
  • 相关文献

参考文献10

  • 1阳春华,段小刚,王雅琳,桂卫华.烧结法生产氧化铝生料浆的配料专家系统设计[J].中南大学学报(自然科学版),2005,36(4):648-652. 被引量:17
  • 2张葛祥,金炜东,胡来招.多变量系统中多参数多目标满意优化研究[J].信息与控制,2003,32(6):481-485. 被引量:9
  • 3冯惕,李少远.一种新的模糊约束满意优化控制算法[J].控制与决策,2004,19(2):187-190. 被引量:6
  • 4赵舵,金炜东.多目标满意优化在模糊控制器设计中的应用[J].电力系统及其自动化学报,2003,15(5):64-69. 被引量:7
  • 5Gareth R Beddoe, Sanja Petrovic. Selecting and weighting features using a genetic algorithm in a case- based reasoning approach to personnel rostering [J]. European J of Operational Research, 2006, 175 ( 1): 649-671.
  • 6Fulya Altiparmak, Mitsuo Gen, Lin Lin, et al. A genetic algorithm approach for multi-objective optimization of supply chain networks[J]. Computers & Industrial Engineering, 2006, 51(1): 196-215.
  • 7Jong-bae Park, Young-moon Park, Jong-ryul Won, et al. An improved genetic algorithm for generation expansion planning[J]. IEEE Trans on Power Systems, 2000,15(3) : 916-922.
  • 8Frank H F Leung, Lam H K, Ling S H, et al. Tuning of the structure and parameters of a neural network using an improved genetic algorithm[J]. IEEE Trans on Neural Networks, 2003, 14(1): 79-88.
  • 9Akrami B, Karimi B, Moattar S M. Two metaheuristic methods for the common cycle economic lot sizing and scheduling in flexible flow shops with limited intermediate buffers: The finite horizon case [J]. Applied Mathematics and Computation, 2006, 183 ( 1 ) : 634-645.
  • 10Romeo M Marian, Lee H Luong, Kazem Abhary. A genetic algorithm for the optimisation of assembly sequences[J]. Computers & Industrial Engineering, 2006, 50(4): 503-527.

二级参考文献19

共引文献34

同被引文献30

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部