期刊文献+

基于熵准则的发酵过程TSK模糊建模 被引量:2

Fermentation process TSK fuzzy modeling based on entropy criteria
下载PDF
导出
摘要 提出了一种基于熵准则函数的TSK模糊系统建模方法.不同于传统的基于MSE经验误差最小的准则函数,该准则函数能从训练样本的整体分布结构来进行参数学习,有效地避免了由于过学习而导致泛化能力差的缺点.将其应用于复杂的发酵过程建模,结果表明新方法具有良好的预测精度、泛化能力和鲁棒性.为解决发酵过程建模中试验数据含有噪音,导致模型预测精度下降的问题提供了一条研究思路. A TSK fuzzy modeling approach based on entropy criteria is presented in this paper. It considers the whole distribution structure of the training data set in the parameter learning process, which is different from the traditional MSE-criteria based parameter learning, and effectively avoids the bad generalization caused by over-learning. Then the proposed method is applied to the complex fermentation process modeling, and the results demonstrate that this method has better prediction accuracy, generalization and robustness. Such that it offers a research viewpoint to circumvent the problem of the prediction accuracy deteriorated by noise existing in the corresponding experimental data.
出处 《控制与决策》 EI CSCD 北大核心 2008年第10期1173-1177,1181,共6页 Control and Decision
基金 国家863计划项目(2006AA10Z313)
关键词 相对熵 Parzen窗法 TSK模糊系统 鲁棒性 Relative entropy Parzen window TSK fuzzy system Robustness
  • 相关文献

参考文献11

二级参考文献57

共引文献165

同被引文献16

  • 1肖建,白裔峰,于龙.模糊系统结构辨识综述[J].西南交通大学学报,2006,41(2):135-142. 被引量:32
  • 2冯斌,须文波.基于TSK模糊系统的生化变量预估模型[J].计算机与应用化学,2006,23(4):343-346. 被引量:6
  • 3Thomas M. Cover Joy A. Thomas Elements of Information Theory[ M ]. 2005.
  • 4WANG Y, LIU H, BEULLENS P, et al. Travel speed prediction using fuzzy reasoning [ C ] Jj Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag, 2008: 446-455.
  • 5WANG Y, LIU H, BEULLENS P, et al. Fuzzy prediction for travel speed[ C] //The 2008 UK Workshop on Computational Intelligence. Leicester UK: De Montfort University, 2008 : 177-182.
  • 6FU L, MEDICE E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data[ J]. BMC Bioinformatics, 2007, 8: 3-18.
  • 7MITRA S, KONWAR K M, PAL S K. Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2002, 32(4) : 328-339.
  • 8KUKOLJ D, LEVI E. Identification of complex systems based on neural and Takagi-Sugeno fuzzy model[ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(1): 272-282.
  • 9CHEN Y, WANG J Z. Support vector learning for fuzzy rule based classification systems [ J ]. IEEE Transactions on Fuzzy Systems, 2003, 11(6) : 716-728.
  • 10POMARES H, ROJAS I, GONZALEZ J, et al. A method for structure identification in complete rule-based fuzzy systems[ C]//The 10th IEEE International Conference on Fuzzy Systems. Washington: IEEE, 2001 : 376-379.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部