期刊文献+

基于搜索空间可调的自适应粒子群优化算法与仿真 被引量:7

Adaptive particle swarm optimization based on search space adjustable and simulation
下载PDF
导出
摘要 针对收缩因子粒子群优化(CPSO)算法易陷入局部最优和发生过早收敛的问题,提出了基于搜索空间可调的自适应粒子群优化(APSO)算法.该算法根据种群早熟收敛程度和个体适应值,在CPSO算法停滞时,将全部粒子有效地划分在3类不同的搜索空间,使种群始终保持搜索空间的多样性,易于跳出局部最优,从而有效地改善了CPSO算法后期的寻优能力. An adaptive particle swarm optimization (APSO) algorithm based on the search space adjustable is proposed and applied to solve the problem that constriction-factor PSO (CPSO) algorithm easily fall into local optimal and occur premature convergence. When the CPSO algorithm stagnates, according to the extent premature convergence groups and individual fitness, the algorithm will divide particles to three different searching spaces, by which the swarm is kept to maintain the diversity of the searching space and easy to jump out of local optima. The late CPSO algorithm optimization capabilities availability are improved.
出处 《控制与决策》 EI CSCD 北大核心 2008年第10期1192-1195,共4页 Control and Decision
关键词 收缩因子粒子群优化 早熟收敛 搜索空间 自适应参数调整 Constriction-factor PSO Premature convergence Search space Adaptive parameter adjusting
  • 相关文献

参考文献7

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proe of IEEE Int Conf on Neural Network. Piseataway: IEEE Press, 1995: 1942-1948.
  • 2Eberhart R C, Shi Y. Particle swarm optimization developments, applications and resources[C]. Proc of 2001 Congress Evolutionary Computation. Piscataway: IEEE Press, 2001: 81-86.
  • 3Shi Y, Eberhart R C. A modified particle swarm optimizer[C]. Proc of IEEE Int Conf on Evolutionary Computation. Piscataway: IEEE Press, 1998. 69-73.
  • 4Clerc M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization [C]. Proc of 1999 Congress on Evolutionary Computation. Washington, 1999: 1951-1957.
  • 5Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulation[C]. Proe of 3rd Genetic and Evolutionary Computation Conf. Sanfranciseo, 2001: 469-476.
  • 6Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. Proc of 2000 Congress on Evolutionary Computation. Piscataway, 2000: 84-88.
  • 7吴浩扬,朱长纯,常炳国,刘君华.基于种群过早收敛程度定量分析的改进自适应遗传算法[J].西安交通大学学报,1999,33(11):27-30. 被引量:75

二级参考文献4

  • 1张晓馈,控制理论与应用,1998年,15卷,1期,17页
  • 2周远晖,清华大学学报,1998年,38卷,3期,93页
  • 3Qi Xiaofeng,IEEE Trans Neural Networks,1994年,5卷,1期,120页
  • 4贺前华,韦岗,陆以勤.基因算法研究进展[J].电子学报,1998,26(10):118-122. 被引量:23

共引文献74

同被引文献72

引证文献7

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部