摘要
研究连续时间线性重复过程的H∞模型降阶问题,目的是设计一个低阶的重复过程来近似原高阶的重复过程,使得误差在H∞性能指标下达到最小.首先给出误差系统沿通道稳定且满足H∞性能指标的充分条件';然后采用投影定理来解决模型降阶问题.得到的条件不完全是线性矩阵不等式的形式,采用锥补线性化算法进行计算求解.仿真实例证实了该设计方法的有效性.
This paper investigates H∞ model reduction problem for linear ditterenttal repetitive processes. attention is focused on the construction of a reduced-order stable along the pass process, such that the H∞ gain of the error process between the original process and reduced-order one is less than a prescribed scalar. A sufficient condition to characterize the bound of H∞ gain of linear differential repetitive processes is presented in terms of linear matrix inequalities (LMIs). And then the projection approach is applied, which casts the model reduction into a sequential minimization problem with LMI constraints by employing the cone complementary linearization (CCL) algorithm. A numerical example shows the effectiveness of the proposed theory.
出处
《控制与决策》
EI
CSCD
北大核心
2008年第10期1196-1200,共5页
Control and Decision
基金
中国博士后科学基金项目(20070420139)
关键词
线性重复过程
模型降阶
H∞性能
沿通道稳定
线性矩阵不等式
Linear repetitive processes
Model reduction
H∞ performance
Stable along the pass
Linear matrixinequality (LMI)