期刊文献+

基于小波消噪的混沌神经网络径流预报模型 被引量:7

The chaotic neural network model of runoff forecast based on wavelet de-noising
下载PDF
导出
摘要 水文要素时间序列中的噪声不仅影响水文混沌特性识别,更影响径流预测精度。本文基于小波消噪理论对水文序列中的噪声进行了处理,并利用混沌理论中的相空间重构技术计算出饱和嵌入维数作为混沌神经网络输入层节点数,将小波技术、混沌理论和神经网络方法结合起来对汛期日径流进行了预测。与消噪前相比,模型结构从7-10-1简化到6-8-1,预测合格率从77.56%提高到85.32%,平均绝对百分比误差从12.52%减少到10.86%,由此表明水文系列中的噪声会影响预测模型的参数和精度,本文所建立的模型是值得借鉴的。 Noise in the hydrological time series influences not only the hydrology chaos identification, but also the runoff prediction precision. The wavelet technology is used to eliminate noise in the daily runoff time series. The saturated embedding dimension as the input node number of chaotic ANN model is computed by the phase restructure of chaos theory. The above gained model is used to predict the daily runoff in flood season. Compared with the model gained by the original daily runoff time series, not only the model structure is simplified from 7 - 10 - 1 to 6 - 8 - 1, but also the prediction precision is increased from 77.56 % to 85.32 % and the mean absolute percentage error is decreased from 12.52% to 10.86%. It shows that noise can influence the parameter and the precision of the prediction model. The built model is worthy to be considered for other predictions.
出处 《水力发电学报》 EI CSCD 北大核心 2008年第5期37-40,32,共5页 Journal of Hydroelectric Engineering
关键词 水文学 径流预报 混沌神经网络 小波消噪 饱和嵌入维数 hydrology runoff forecast chaotic neural network wave de-noising saturated embedding dimension
  • 相关文献

参考文献10

  • 1高思莉,邱红梅,刘春霞,肖青.噪声对离散混沌系统非线性特征量的影响[J].东北师大学报(自然科学版),2003,35(1):35-43. 被引量:6
  • 2Hsu C C, Gobovic D, Zaghloul M E, et al. Chaotic Neuron Models and Their VLSI Circuit Implementation [ J ]. Neural Networks, 1996,7(6) : 1339 - 1350.
  • 3冯国章,王双银,韦华艳.多元自回归模型在枯水径流预报中的应用[J].自然资源学报,1996,11(2):184-186. 被引量:17
  • 4French M. N., et al. Rainfall forecasting in space and time using a neural networks[J] .Journal of Hydrology, 1992,13(7):1 - 13.
  • 5杨旭,栾继虹,冯国章.中长期水文预报研究评述与展望[J].西北农业大学学报,2000,28(6):203-207. 被引量:61
  • 6A. Elshorbagy, S. P. Simonovic, U. S. Panu. Noise reduction in chaotic hydrologic time series:facts and doubts[J] .Journal of Hydrology, 2002, (256) : 147 - 165.
  • 7Donoho D. H. De. Noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41(3):613 -617.
  • 8Takens. Detecting strange attractors in turbulence [ J ]. Lecture Notes in Mathematics( S0075 - 8434). 1981,898 (12) : 366 - 381.
  • 9施伟锋,聂益文.船舶大功率发电机混沌神经网络建模[J].中国电机工程学报,2005,25(21):156-162. 被引量:6
  • 10Aihara K, Takabe T, Toyoda M. Chaotic neural network[J]. Physics Letter A, 1990,144(6):333 - 340.

二级参考文献44

共引文献83

同被引文献157

引证文献7

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部