期刊文献+

基于非结构网格的溃坝水流干湿变化过程数值模拟 被引量:15

Numerical modeling of dam-break water flow with wetting and drying change based on unstructured grids
下载PDF
导出
摘要 本文采用非结构网格的有限体积法对具有复杂地形的溃坝水流进行了数值模拟。利用Roe格式的近似Riemann解来计算界面通量,对底坡源项进行特征分解和迎风处理以保证格式的和谐性,对摩阻项采用了半隐式离散的方法来增加计算的稳定性,采用了一种稳定有效的动边界处理方法来模拟干湿边界的变化。最后通过两个算例对本文的模型进行了验证,结果表明该模型具有较好的稳定性和可靠性,能够较好的模拟具有复杂地形的溃坝水流演进过程。 An unstructured finite-volume model is presented for simulating dam-break water flows over complex topographies. The model uses the Roe' s approximate Riemann solution in the calculation of flow flux, the characteristic decomposition method is used for upwind scheme in dealing with the bed slope source term, and the semi-implicit approach is used for the friction source terms. A robust procedure is adapted to efficiently and accurately simulate the movement of a wet/dry boundary. The established model shows good stability and accuracy as it is tested with two sets of measured data, hence it can be used to simulate dam-break water flows over complex topographies.
出处 《水力发电学报》 EI CSCD 北大核心 2008年第5期98-102,97,共6页 Journal of Hydroelectric Engineering
基金 国家自然科学基金资助项目(50221903)
关键词 水力学 溃坝 有限体积法 复杂地形 干湿边界 hydraulics dam-break finite volume method complex topographies wet/dry boundary
  • 相关文献

参考文献9

  • 1Zhou J G, Causon D M, Mingham C G, et al. The surface gradient method for the treatment of source terms in the shallow-water equations [J]. J Comput Phys, 2001, 168:1 -25.
  • 2Valiani A, Begnudelli L. Divergence form for bed slope source term in shallow water equations [J]. J Hydrau Eng, 2006, 132(7) : 652 - 665.
  • 3Hubbard M E, Gareia-Navarro P. Flux difference splitting and the balancing of source terms and flux gradients [ J]. Journal of Computational Physics, 2000, 165: 89- 125.
  • 4王志力,耿艳芬,金生.具有复杂计算域和地形的二维浅水流动数值模拟[J].水利学报,2005,36(4):439-444. 被引量:47
  • 5Toro F E. Riemann solvers and numerical methods for fluid dynamics [ M]. Berlin: Springer-Vedag, 1999.
  • 6Mohammadian A, Le Roux D Y. Simulation of shallow flows over variable topographies using unstructured grids [ J ]. Int. J. Numer. Meth. Fluids, 2006, 52 : 473 - 498.
  • 7Sleigh P A, Gaskell P H. An unstructured finite-volume algorithm for predicting flow in rivers and estuaries [ J ]. Computers & Fluids, 1998, 27 : 479 - 508.
  • 8Brufau P, et al. A numerical model for the flooding and drying of Irregular domains [ J ]. International Journal for Numerical Methods in Fluids, 2002, 39: 247- 275.
  • 9Tomas Chacon Rebollo, Nieto Fernandez, Macarena Gomez Mannol. A flux-splitting solver for shallow water equation with source terms [ J]. International Journal for Numerical Methods in Fluids, 2003, 42 : 23 - 55.

二级参考文献18

  • 1Dells A l,Skeels C P, Ryrie S C. Evaluation of some approximate Riemann solver for transient open channel flows[J].Journal of hydraulic engineering,2000,38(3) :217 - 231.
  • 2Vadym Aizinger, Clint Dawson. A discontinuous Galerkin method for two-dimensional flow and transport in shallow water[ J] . Advances in Water Resources, 2002,25: 67 - 84.
  • 3Fraccarrllo L, Capart H, Zech Y. A Godunov method for the computation of erosional shallow water transients[J].International journal for Numerical Methods in fluids,2003,41:951 - 976.
  • 4Alcrudo Francisco, Benkhaldoun Fayssal. Exact solutions to the Riemann problem of the shallow water equations with a bottom step[J] .Computers & Fluids,2001,30:643- 671.
  • 5Ji-Wen Wang, Ru-Xun Liu A comparative study of finite volume methods on unstructured meshes for simulation of 2D shallow water wave problems[ J]. Mathematics and Computers in Simulation, 2000,53:171 - 183.
  • 6Calefll valerio, Valiani alessandro, Zanni andrea. Finite volume method for simulating extreme flood events in natural channels[ J ]. Journal of Hydraulic Research, 2003,41 ( 2 ) : 167 - 177.
  • 7Sleigh P A, Gaskell P H, Berzins M, etc. An unstructured finite-volume algorithm for predicting flow in rivers and estuaries[J] .Journal of Hydraulic Research, 1998, (4) :479 - 508.
  • 8Smolarkiewicz P K, Margolin L G. MPDATA: A finite-difference solver for geophysical flows[ J ]. Journal of Computational Physics, 1998,140:459 - 480.
  • 9Jenny P, Muller B. Rankine-Hugoniot-Riemann solver considering source terms and multidimensional effects[ J ]. Journal of Computational Physics, 1998,145:575 - 610.
  • 10Glaister P. Prediction of supercritical flow in open channels[ J]. Computers and Mathematics with Applications, 1992,24(7) :69- 82.

共引文献46

同被引文献191

引证文献15

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部