期刊文献+

用简化PDF方法分析温度脉动在超声速湍流燃烧中的作用

Examine the Effect of Temperature Fluctuation on Supersonic Combustion by Assumed PDF Approach
下载PDF
导出
摘要 考虑湍流场中温度脉动,采用简化PDF方法(假设温度脉动服从截尾高斯分布),研究了湍流对化学反应速率常数的影响,分析了Reynold平均方法不能准确计算时均化学反应速率常数的原因,得到考虑温度脉动的超声速点火实验计算结果,优于不考虑温度脉动的计算结果.进一步应用数值算例说明时均的速率常数与温度脉动的关系,计算方法显著影响点火延迟时间的计算准确性,对超声速流场点火位置的计算比较重要. An assumed probability density fuction (PDF) approach, developed by Girimaji and Baurle, was adopted tor modeling supersonic combustion. A clipped Gauss function was used to account for turbulence-reacting interaction, which demonstrated that reaction rate con,,tant was amplified or decreased variously by turbulence. Temperature variance was modeled h'om entropy variance transport equation conjugated with Wilcoxg κ-ω turbulent model. The approach was applied to a supersonic, co-axial H2/air burner experiment conducted by Cheng et al. The result of the model using simplified kineties showed improvement in predicting of turbulence effects on the initiating step which was of first-order importance because of small residence time in supersonic fluid field. Comparison was made indicating a serious problem in estimation of average rate constant using a Reynold decomposition method. A set of numerical tests showed average reaction rate constant was greatly modified by temperature fluctuation and changed the time delay of ignition sufficiently.
作者 陈志辉 徐旭
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2008年第5期468-473,共6页 Journal of Combustion Science and Technology
关键词 超声速燃烧 湍流燃烧模型 计算流体力学 慨率分布函数 supersonic combustion turbulence-chemistry closure computational fluid dynamics probalit,, dcnsily thnction
  • 相关文献

参考文献11

  • 1Alexopoulos G A, Baurle R A, Hassan H A. A κ-ω mulitvariable beta PDF for supersonic turbulent combustion [C]// AIAA. 1993, 93-2197.
  • 2Narayan J R, Girimaji S S. Turbulent reacting flow computations including turbulence-chemistry interactions [ C ]// AIAA. 1992, 92-0342.
  • 3Gaffney R L, White J A , Girimaji S S. Modeling turbulent/ chemistry interactions using assumed PDF methods [ C]// AIAA. 1992, 92-3638.
  • 4Baurle R A, Alexopoulos G A, Hassan H A. Assumed joint probability density function approach for supersonic turbulent combustion[J]. J Prop P , 1994, 10(4): 473484.
  • 5Baurle R A, Alexopoulos G A, Hassan H A. Analysis of supersonic combustors with swept ramp injectors [ C ]//AIAA. 1995, 95-2413.
  • 6Maas U A, Pope S B. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space [ J]. Combust and Flame, 1992, 88: 239-264.
  • 7Gerlinger Peter, Helge Mobus, Dieter Bruggemann. An implicit multigrid method for turbulent combustion [ J]. J Comput Phys, 2001, 167 : 247-276
  • 8Jachimowshi C J. An Analytic Study of Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion [R]. NASA TP 2791 , 1988.
  • 9Wilcox D C. Turbulence Modeling for CFD [ M ]. Canada : DCW Industries Inc, 1998.
  • 10Cheng T S, Ehrmeyer J A, Pitz R W, et al. Raman meas- urement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame [ J].Combust and Flame, 1994, 99: 153-173.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部