期刊文献+

神经脉冲波传播形态的研究 被引量:4

Study on Propagation Form of Nerve Impulse Waves
下载PDF
导出
摘要 Hodgkin-Huxley模型(H-H模型)是研究神经电生理不可或缺的数学依据。但是,到目前为止,对H-H神经元模型的分析缺少解析研究。本文对经典的H-H模型进行具体分析,得到简化H-H模型以及Nagumo方程,利用齐次平衡方法首次求出简化H-H方程和Nagumo方程的孤波解。研究表明:神经冲动可以孤波的模式传播。 Hodgkin-Huxley model is the indispensable mathematics basis for the study of neuro-electro-physiology. But so far, there is few analytic study about H-H neuron model. In this paper, the features of the classical H-H model are analyzed, and then a simplified H-H model and Nagurno equation are proposed, and their solitary wave solutions are first obtained with the homogeneous balance method. The study shows that nerve impulse may propagate with the mode of solitary wave.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2008年第5期1184-1188,共5页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(90205018)
关键词 Hodgkin-Huxley方程 Nagumo方程 孤波解 神经冲动 Hodgkin-Huxley equation Nagumo equation Solitary wave solutions Nerve impulse
  • 相关文献

参考文献12

二级参考文献56

  • 1胡岗.随机力与非线形系统[M].上海科学教育出版社,1994..
  • 2Longtin A, Bulsara A, Moss F, et al. Tune Interval Sequences in Bistable System and Ihe Noise-Induced Transmission of Information by Sensory Neurons. Phys Rev Lett, 1991, 67:656,-659.
  • 3Longtin A. Stochastic Resonance in Neuron Models. J Star Phys, 1993, 70:309-327.
  • 4Douglass .I K, Wilkens L, Pantazelou E, et al. Noise Enhancement of Information Transfer in Crayfish Mechoreceptors by Stochastic Resonance. Nature, 1993, 365:337-340.
  • 5Wiesenfeld K, Pierson D, Pantazelo E, et al. Stochastic Resonance on a Circle. Phys Rev Lett, 1994,72(14):2125-2129.
  • 6Levin J E, Miller J P. Broadband Neural Encoding in the Cricket Cercal Sensory System Enhanced by Stochastic Resonance. Nature, 1996, 380 (6570): 165--168.
  • 7Benzi R, Sutera S. Vulpiani A. The Mechanism of Stochastic Resonance. l Phys A, 1981, 14:LA53-LA57.
  • 8Fauve S. Heslot E Stochastic Resonance in a Bistable System. Phys Lett A, 1983.97:5-7.
  • 9Hu G, Ditzinger T. Ning C.Z. Stochastic Resonance Without External Periodic Force. Phys Rev Lett, 1993, 71 :807-810.
  • 10Hart K, Yim T G, Postnov D E, et al. Interacting Coherence Resonance Oscillators. Phys Rev Lett, 1999,83(9): 1771 - 1774.

共引文献22

同被引文献20

  • 1滕晓燕,张卫国.Huxley方程的定性分析及精确解[J].高校应用数学学报(A辑),2006,21(1):65-69. 被引量:5
  • 2HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. Journal of Physiology, 1952, 117: 500- 544.
  • 3FITZHUGH R. Impulses and physiological states in theoretical models of nerve membrane[J]. Biophysical J, 1961,1 :445- 466.
  • 4MCKEAN H P. Nagumo's equation[J]. Advances in Mathematics, 1970,4 : 209-223.
  • 5CHOU M H. Computer aided experiments on the Hopf bifurcation of the FitzHugh-Nagumo nerve model[J]. Compters Math Applic, 1995,29(10) :19-33.
  • 6RINZEL J, KELLER J B. Traveling wave solutions of a nerve conduction equation[J]. Biophysical Journal,1973,13: 1313-1337.
  • 7WANG M L. Solitary wave solutions for variant boussinesq equations[J]. Phys Lett A, 1995,199 : 169-172.
  • 8LI X Z, WANG M L. A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms [J]. Physics Letters A, 2007,361: 115- 118.
  • 9李向正,李修勇,赵丽英,张金良.Gerdjikov-Ivanov方程的精确解[J].物理学报,2008,57(4):2031-2034. 被引量:21
  • 10张伟,乔清理.联想记忆人工神经网络的发展及研究现状[J].医疗卫生装备,2008,29(5):36-38. 被引量:4

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部