期刊文献+

正交免疫克隆粒子群多目标优化算法 被引量:5

Orthogonal Immune Clone Particle Swarm Algorithm on Multiobjective Optimization
下载PDF
导出
摘要 该文基于抗体克隆选择学说理论,提出了一种求解多目标优化问题的粒子群算法——正交免疫克隆粒子群算法(Orthogonal Immune Clone Particle Swarm Optimization,OICPSO)。根据多目标的特点,提出了适合粒子群算法的克隆算子,免疫基因算子,克隆选择算子。免疫基因操作中采用了离散正交交叉算子来获得目标空间解的均匀采样,得到理想的Pareto解集,并引入拥挤距离来减少获得Pareto解集的大小,同时获得具有良好均匀性和宽广性的Pareto最优解集。实验中,与NSGA-Ⅱ和MOPSO算法进行了比较,并对算法的性能指标进行了分析。结果表明,OICPSO不仅增加了种群解的多样性而且可以得到分布均匀的Pareto有效解集,对于多目标优化问题是有效地。 Based on the particle swarm optimization and antibody clonal selection theory, a novel Orthogonal Immune Clone Particle Swarm Algorithm (OICPSO) is presented to solve multiobjective optimization. According to the problem characters, clone operator, immune gene operator and clone selection operator are designed in this paper. And discrete orthogonal crossover operator is used in immune gene operations to obtain uniformity of the objective space and the idea Pareto solutions. And crowding-comparison approach is adopted to obtain the uniformity of the population distribution. In experiments, the results of OICPSO are compared with NSGA-II and MOPSO, and the quality of solutions is analyzed with parameters. The results indicate that OICPSO not only can increase the solutions' diversity but also can obtain the Pareto solutions. OICPSO is effective on multiobjective optimizations.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第10期2320-2324,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60133010 60372045) 国家"863"计划项目(2002AA 135080) 国家"973"计划项目(2001CB309403)资助课题
关键词 粒子群优化 人工免疫系统 克隆选择 正交设计 多目标优化 Particle swarm optimization Aartificial immune system Clone selection Orthogonal design Multiobjective optimization
  • 相关文献

参考文献10

  • 1Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[C]. In: the proceedings of the International Conference on Genetic Algorithms and Theirs Applications. Pittsburgh, PA, 1985: 93-100.
  • 2Fonseca C M and Fleming P J. Genetic algorithms for muttiobjective optimization: formulation, discussion and generalization [C]. Proceedings of the Fifth International Conference on Genetic Algorithm (S. Forrest, ed.), California, university of Illinois at Urbana Champaign, Morgan Kaufman Publishers, 1993: 416-423.
  • 3Horn J and Nafpliotis N. Multiobjective optimization using the niched Pareto genetic algorithm. Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana, Champaign: IlliGAL Report 93005, 1993.
  • 4Srinivas N and Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms [C]. Evolutionary Computation, 1994, 2(3): 221-248.
  • 5Zitzler E and Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach [C]. IEEE Trans. on Evolutionary Computation, 1999, 3(4): 257-271.
  • 6Zitzler E, Laumanns M, and Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm. Swiss Federal Institute of Technology, Lausanne, Switzerland, Technical Report TIK-Rep 103, 2001.
  • 7Deb K, Pratap A, Agarwal S, and Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ [J]. IEEE Trans. on Evolutionary Computation, 2002, 6(2): 182-197.
  • 8Coello C A and Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization [C]. In Proceedings of the Congress on Evolutionary Computation (CECT2002)), Honolulu, Hawaii, USA 2002: 1051-1056.
  • 9杜海峰,公茂果,焦李成,刘若辰.用于高维函数优化的免疫记忆克隆规划算法[J].自然科学进展,2004,14(8):925-933. 被引量:19
  • 10Leung Y W and Wang Y. An orthogonal genetic algorithm with quantization for global numerical optimization [J]. IEEE Trans. on Evolutionary Computation, 2001, 5(1): 41-53.

二级参考文献11

  • 1[9]陆德源,等.现代免疫学.上海:上海科技教育出版社,1998
  • 2[10]Muhlenbein H, et al. Predictive models for the breeder genetic algorithm. Evolutionary Computation, 1993, 1 (1): 25
  • 3[11]Leung Y W, et al. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 41
  • 4[1]Dasgupta D, et al. Artificial immune systems in industrial applications. In: IPMM′99. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials.IEEE Press, 1999. 257~267
  • 5[3]Cooper K D, et al. Procedure cloning. In: Proceedings of the 1992International Conference on Computer Languages. IEEE Press,1992. 96~ 105
  • 6[4]BalazinskA M, et al. Advanced clone-analysis to support object-oriented system refactoring. In: Proceedings: Seventh Working Conference on Reverse Engineering, IEEE Press, 2000. 98
  • 7[5]Esmaili N, et al. Behavioural cloning in control of a dynamic system. In: IEEE International Conference on Systems, Man and Cybernetics Intelligent Systems for the 21st Century. 1995, 3:2904
  • 8[6]Hybinette M, et al. Cloning: A novel method for interactive parallel simulation. In: Proceedings of the 1997 Winter Simulation Conference. IEEE Press, 1997. 444
  • 9[7]Castro L N De, et al. Learning and Optimization using the clonal selection principle. IEEE Trans Evolutionary Computation, Special Issue on Artifical Immune Systems, 2002, 6(3): 239
  • 10[8]Kim J, et al. Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with a negative selection operator. In: Proceedings of the 2001 Congress on Evolutionary Computation. IEEE Press, 2001. 1244~1252

共引文献18

同被引文献73

引证文献5

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部