期刊文献+

电磁散射研究中的自适应修正特征基函数法 被引量:2

Adaptively Modified Characteristic Basis Function Method for Electromagnetic Scattering Study
下载PDF
导出
摘要 该文提出了一种新的特征基函数法——自适应修正特征基函数法(Adaptively Modified Characteristic Basis Function Method,AMCBFM)。首先在分块子域上构建初次基函数,并计算出基函数的系数以及各块的初次电流;而后用块间互阻抗、各块的初次电流以及初次基函数系数的模来构造反映块间耦合的二次基函数,计算出其系数以及更为精确的电流,高次基函数的求解依此类推,应用一种新的精度判断方法方便地控制电流误差以停止计算更高次的基函数。讨论了不同模型时,不同特征基函数法的精度收敛性能,AMCBFM在基函数阶数较低时收敛性能优于已有的方法。还分析了在尽可能提高计算速度时分块数目与未知数个数的关系。数值结果表明,AMCBFM具有有效降低计算矩阵的尺寸,精度高,计算速度快,误差易控制等优点。 In this paper, an Adaptively Modified Characteristic Basis Function Method (AMCBFM) based on partitioning object geometry into blocks is proposed. Firstly, the primary CBFs arising from the self-interaction within the self-block are generated, then the primary current vector is elicited; subsequently, the second CBFs which account for the mutual coupling effects from the other distinct domains expect the own ones by using the inter-impedances, primary current vectors and the modulus of the primary CBFs coefficients, is gotten. And a more accurate current vector is obtained. The higher CBFs can be also derived with the same way. The difference of the currents' convergence speeds between the new CBFM and conventional CBFMs under diverse models via a new convenient method of controlling the result precision is discussed, and the results show that the new CBFM is better than those of conventional ones. Finally, the relationship between the block number and the unknowns under the condition of improving calculating speed is analyzed. The numerical results indicate that the new method has a series of merits: reducing the size of the matrix equation into a small level, the satisfying precision, high calculating speed and simple error control condition.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第10期2364-2368,共5页 Journal of Electronics & Information Technology
关键词 电磁散射 RCS 自适应修正特征基函数法 误差控制 Electromagnetic scattering Radar cross section Adaptively Modified Characteristic Basis Function Method (AMCBFM) Error control
  • 相关文献

参考文献2

二级参考文献21

  • 1胡俊,聂在平,王军,邹光先,胡颉.三维电大目标散射求解的多层快速多极子方法[J].电波科学学报,2004,19(5):509-514. 被引量:75
  • 2[1]K F Sabet, J C Cheng, and L P B Katehi. Efficient wavelet-based modeling of printed circuit antenna arrays[J]. IEE Proc Microwaves Antennas Propagat,146 (1999): 298~304.
  • 3[2]F X Canning. Improved impedance matrix localization method[J]. IEEE Trans Antennas Propagat, AP-41 (1993): 659~667.
  • 4[3]S Ooms and D D Zutter. A new iterative diakopticsbased Multilevel Moments Method for planar circuits [J]. IEEE Trans Microwave Theory and Tech, 46(1998): 280~291.
  • 5[7]V S Prakash, S J Kwon, and R Mittra. An efficient solution of a dense system of linear equations arising in the method-of-moments formulation [ J ]. Microwave Optical Technol Lett, 33 (2002): 196~200.
  • 6V V S Prakash,R Mittra.Characteristic basis function method:A new technique for efficient solution of method of moments matrix equations[J].Microwave and Optical Technology Letters,2003,36 (2):95 ~ 100.
  • 7Junho Yeo,V V S Prakash,R Mittra.Efficient analysis of a class of microstrip antennas using the characteristic basis function method[J].Microwave and Optical Technology Letters,2003,39(6):456~464.
  • 8Y F Sun,C H Chan,R Mittra,et al..Characteristic basis function method for solving large problem arising in dense medium scattering[C].IEEE Antennas Propagation Soc.Inc.Symp.,2003,1068~1071.
  • 9M Kuzuoglu.Fast solution of electromagnetic boundary value problems by the Characteristic Basis Functions/ FEM approach[C].IEEE Antennas Propagation Soc.Inc.Symp.,2003,1072~1075.
  • 10L Tsang,J A Kong,et al..Scattering of electromagnetic waves:Numerical simulations[M].New York:John Wiley & Sons,Inc.,2001.

共引文献11

同被引文献32

  • 1张立鹏,万国宾.任意形状单元有限微带阵列的电磁散射分析[J].现代雷达,2006,28(2):57-59. 被引量:1
  • 2方棉佳,王洪波,曾涛,耿方志.混合域基函数在线散射体电磁散射中的应用[J].现代雷达,2007,29(5):82-85. 被引量:1
  • 3Korada U, Allen T, Sadasiva M R. Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects[J]. IEEE Transactions. on Antennas and propagation, 1986, 34(6): 758-765.
  • 4Rao S M, Sarkar T K, Midya P, et al. Electromagnetic radiation and scattering from finite conducting and dielectric structure : surface/surface formulation [ J ]. IEEE Transactions, on Antennas and propagation, 1991, 39(7) : 1034 - 1037.
  • 5Kishk A A, Glisson A W, Goggans P M. Scattering from conductors coated with materials of arbitrary thickness [ J ]. IEEE Transactions on Antennas and Propagation, 1992, 40 (1):108 -112.
  • 6Tonder J V, Jakobus U. Fast multipole solution of metallic and dielectric scattering problems in FEKO [ C ]// IEEE/ ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, [ S. 1. ] : IEEE Press, 2005.
  • 7Que Xiaofeng, Nie Zaiping, Hu Jun. Analysis of scattering and radiation of mixed conducting/dielectric objects using MLFMA[ C]//The 7th International Symposium on Antennas, Propagation, and EM Theory, [ S. 1. ] : [ s. n. ], 2006.
  • 8Deng Hai, Ling Hao. An efficient wavelet pre-conditioner for iterative solution of three - dimensional electromagnetic integral equations [ J ]. IEEE Transactions. Antennas and Propogation. 2003, 51(3): 654-660.
  • 9Nie Xiao Chun, Li Lewei, Yuan Ning , et al. A fast analysis of electromagnetic scattering by arbitrarily shaped homogeneous dielectric objects [ J ]. Microwave and Optical Technology Letters, 2003,38 ( 1 ) :30 -35.
  • 10Soon J K, Du K, Mittra R. Characteristic basis function method:A numerically efficient technique for analyzing microwave and RF circuits [ J ]. Microwave and Optical Technology Letters, 2003, 38 (6) : 444 - 448.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部