摘要
We used the star counts in 21 BATC fields obtained with the National Astronomical Observatories (NAOC) 60/90 cm Schmidt Telescope to study the structure of the Galactic halo. Adopting a de Vaucouleurs r1/4 law halo, we found that the halo is somewhat flatter (c/a - 0.4) towards the Galactic center than in the anticentre and antirotation direction (c/a 〉 0.4). We also notice that the axial ratios are smaller (flatter) towards the low latitude fields than the high latitude fields, except for a few fields. We provide robust limits on the large-scale flattening of the halo. Our analysis shows that the axial ratio of the halo may vary with distance and the observation direction. At large Galactocentric radii, the halo may not have a smooth density distribution, but rather, it may be largely composed of overlapping streams or substructures, which provides a support for the hybrid formation model.
We used the star counts in 21 BATC fields obtained with the National Astronomical Observatories (NAOC) 60/90 cm Schmidt Telescope to study the structure of the Galactic halo. Adopting a de Vaucouleurs r1/4 law halo, we found that the halo is somewhat flatter (c/a - 0.4) towards the Galactic center than in the anticentre and antirotation direction (c/a 〉 0.4). We also notice that the axial ratios are smaller (flatter) towards the low latitude fields than the high latitude fields, except for a few fields. We provide robust limits on the large-scale flattening of the halo. Our analysis shows that the axial ratio of the halo may vary with distance and the observation direction. At large Galactocentric radii, the halo may not have a smooth density distribution, but rather, it may be largely composed of overlapping streams or substructures, which provides a support for the hybrid formation model.
基金
the National Natural Science Foundation of China