期刊文献+

基于Jacobi矩阵逆特征值的耦合系数矩阵提取

Coupling matrix extraction based on solutions of the inverse eigenproblem for Jacobi matrices
原文传递
导出
摘要 提取耦合系数矩阵是提高滤波器调谐效率的关键。该文提出了一种基于Jacobi矩阵逆特征值理论的耦合系数矩阵提取方法,它通过测量滤波器单端口反射系数的相位得出矩阵的特征值,进而通过求解Jacobi矩阵的逆特征值问题由特征值来提取出耦合系数矩阵。该方法只用到了矩阵的迭代运算,克服了采用优化手段的其他提取方法中可能出现收敛慢或局部收敛而得不到准确解的缺陷,因而其提取精度是很高的。6阶高温超导滤波器的调谐实例验证了该方法的可行性。 Coupling matrix extraction is important for improving the efficiency of tuned microwave filters. An improved coupling matrix extraction method was developed based on solutions of the inverse eigenproblem for Jacobian matrices. The method extracts the coupling matrix from its eigenvalues acquired by measuring the phase characteristics of the input reflectance. Some optimization approaches result in only local convergence or non-convergence, so this method uses only matrix manipulation, so it is accurate and convergent. The tuning a six-pole superconducting filter demonstrates the feasibility of the method .
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第10期1632-1635,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家“八六三”高技术项目(2006AA03Z213)
关键词 滤波器 调谐 特征值 JACOBI矩阵 filter tuning eigenvalue Jacobi matrix
  • 相关文献

参考文献11

  • 1LIU Bangchang, CAO Bisong, ZHU Meihong, et al. An HTS 20-pole microstrip filter for GSM-1800 base stations [J]. Journal of Superconductivity, 2003, 16(5): 819-822.
  • 2Atia A E, Williams A E. Measurements of intereavity couplings [J]. IEEE Trans Microwave Theory Tech, 1975, MTT-23:519 - 522.
  • 3Thal H L. Computer-aided filter alignment and diagnosis [J]. IEEE Trans Microwave Theory Tech, 1978, MTT-26: 958 - 963.
  • 4Muller G. On computer-aided tuning of microwave filters [J]. Proc Int Syrup Circuits & Systems, 1976:201 -211.
  • 5Kahrizi Masoud. Computer diagnosis and tuning of RF and microwave filters using model-based parameter estimation[J]. IEEE Trans Circuits and Systems, 2002, 9(49) : 1263- 1270.
  • 6Atia A E, Yao H. Tuning & measurement of coupling and resonant frequencies for cascaded resonators[J]. Proc IEEE MTT-S Int Microwave Syrup, 2000, 11(16):1637 - 1640.
  • 7Dunsmore J. Simplify filter tuning in the time domain[J].Microwaves & RF, 1999, 38(4) : 68 - 84.
  • 8Hochstadt H. On some inverse problem in matrix theory [J]. Arch Math, 1967, 18:201-207.
  • 9Atia A E, Williams A E. Narrow-bandpass waveguide filters [J]. IEEE Trans Microwave Theory Tech, 1972, MTT-20: 258 - 264.
  • 10XU Shufang. An Introduction to Inverse Algebraic Eigen-Value Problems[M]. Beijing: Peking University Press, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部