摘要
(2-acrylamido) ethyl tetradecyl dimethylammonium bromide (AMC14AB) was polymerized in aqueous solu- tion to form the homopolymer P(AMC14AB). The physicochemical properties of P(AMC14AB) in aqueous solution were mainly studied with fluorescent probe method, surface tension measurement and conductom- etry. The experimental results show that the aggregation morphology of P(AMC14AB) in aqueous solution is unimolecular micelle as expected. Being different from conventional multimolecular micelle systems, the unimolecular micelle system of P(AMC14AB) not only shows critical micellar concentration (CMC=0), (i.e. once added to pure water, the surface tension decreases immediately in spite how small the density is), but also the surface tension stays almost the same with the concentration increasing. That is to say, there is no mutational point on the relationship curve between surface tension and concentration. Furthermore, the unimolecular micelle system of P(AMC14AB) has no Krafft temperature, i.e. at any temperature, so long as it is dissolved in water, the unimolecular micelles will form. Besides this, for the solubilization of hydrophobic organic substances, the unimolecular micelle system of P(AMC14AB) is obviously different from the common multimolecular micelle system, having no turning point on the relationship curve between toluene solubi- lizaion amount and P(AMC14AB) concentration, and the solubilizing ability of the unimolecular-micelle system of P(AMC14AB) for hydrophobic organic substances is much higher than that of the conventional multimolecular micelle solutions of common surfactants, such as centyl trimethyl ammonium bromide.