期刊文献+

LS-SVM:一种有效的新闻主题追踪方法 被引量:3

LS-SVM:effective algorithm of news topic tracking
下载PDF
导出
摘要 新闻主题追踪是对主体所感兴趣的新闻主题的发展趋势进行动态追踪,其优势在于对所感兴趣的主题基于文本模型及理解的动态追踪,因此更多地涉及文本表示与语义理解。LS-SVM首先将文本利用LSI(隐含语义分析)进行分析,完成对文本基于语义的特征降维及文本表示;然后将隐含语义文本表示的结果输出给SVM进行主题追踪,从而实现从语义层次上的新闻主题追踪。实验结果表明,与传统的主题追踪相比较,该方法能够有效提高主题追踪的性能,减少追踪的错报率和漏报率。 Topic tracking is to track news trend which someone is interested in it. Its advantages lie in dynamic tracking based on text model and understanding, so it involves in more text express and semantic understanding. LS-SVM first analyzed text using LSI(latent semantic indexing), which achieved semantic-based character reduction and text express, then combined SVM to complete semantic-based topic tracking. The result of experiment shows, compared to conventional methods, LS-SVM can improve performance of topic tracking effectively and reduce fault and fail rate of topic tracking.
出处 《计算机应用研究》 CSCD 北大核心 2008年第9期2661-2663,2667,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2007AA01Z439)
关键词 隐含语义分析 支持向量机 主题追踪 奇异值分解 隐含语义 LSI SVM topic tracking SVD latent semantics
  • 相关文献

参考文献7

  • 1ALLAN J. Introduction to topic detection and tracking[ M ]//Topic Detection and Tracking: Event-based Information Organization. Norwell:Kluwer Academic Publishers ,2002 : 1-16.
  • 2FIERRO R D,BERRY M W. Efficient computation of the Riemannian SVD in TLS problems in information retrieval [ M ]//Total Least Squares and Errors-In-Variables Modeling: Analysis, Algorithms, and Applications. Norwell : Kluwer Academic Publishers,2002:349- 360.
  • 3范春法,李庆中,李伟,等.统计自然语言处理[M].北京:电子工业出版社.2005.
  • 4HOFMANN T. Gaussian latent semantic models for collaborative fihering[ C]//Proc of the 26th Annual International ACM SIGIR Confe rence on Research and Development in Information Retrieval. New York :ACM Press,2003:259-266.
  • 5郑新立,徐云青,骆昌日.LSI模型在信息检索中的应用[J].计算机技术与发展,2006,16(10):160-162. 被引量:1
  • 6The 2004 Topic Detection and Tracking. Task definition and evaluation plan [ EB/OL]. (2004). http://www. nist. gov/speech/tests/ tdt/tdt2002/evalpan/htm.
  • 7王会珍,朱靖波,季铎,叶娜,张斌.基于反馈学习自适应的中文话题追踪[J].中文信息学报,2006,20(3):92-98. 被引量:17

二级参考文献16

  • 1James Allan.Topic Detection and Tracking:Event-based Information Organization[M].USA:Kluwer Academic Publishers,2002,1 -16.
  • 2Thomas Galen Ault,Yiming Yang.Information Filtering in TREC-9 and TDT-3:A Comparative Analysis[J].Information Retrieval,2002,(5):159-187.
  • 3V.R.Shanks,H.E.Williams.TDT2001 Topic Tracking at RMIT University[A].The Topic Detection and Tracking (TDT) Workshop[C].2001.
  • 4王会珍,朱靖波,陈文亮,等.基于一元语法模型的中文话题追踪[A].第二届全国计算语言学学生会议[C].2004:422-427.
  • 5Aalbersberg,I.J.Incremental Relevance Feedback[A].In:proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C],1992:11 -22.
  • 6Tim Leek,Richard Schwartz,and Srinivasa Sista.Probabilistic approaches to topic detection and tracking.In James Allan,editor,Topic Detection and Tracking:Event-based Information Organization[M],USA:Kluwer Academic Publishers,2002,67-84.
  • 7Linguistic Data Consortium.Creating the Annotated TDT-4 Y2003 Evaluation Corpus[H],TDT 2003 Evaluation Workshop,NIST,2003.
  • 8The 2004 Topic Detection and Tracking (TDT2004) Task Definition and Evaluation Plan[H],version 1.0,http://www.nist.gov/speech/tests/tdt/tdt2002/evalplan.htm,2004.
  • 9Chien Lee-Feng,Pu Hsiao-Tieh.Important Issues on Chinese Information Retrieval Computational Linguistics and Chinese Language Processing,1996,1 (1):205-221.
  • 10Chien Lee-Feng.PAT-Tree-Based Keyword Extraction for Chinese Information Retrieval[J].SIGIR,1997,31 (SI):50-58.

共引文献16

同被引文献56

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部