期刊文献+

基于复小波噪声方差显著修正的SAR图像去噪 被引量:3

SAR Image Denoising Based on Significant Estimation of Noise Variance of Complex Wavelet Coefficients
下载PDF
导出
摘要 提出了一种基于复小波域统计建模与噪声方差估计显著性修正相结合的合成孔径雷达(Syn-thetic Aperture Radar,SAR)图像斑点噪声滤波方法。该方法首先通过对数变换将乘性噪声模型转化为加性噪声模型,然后对变换后的图像进行双树复小波变换(Dualtree Complex Wavelet Transform,DCWT),并对复数小波系数的统计分布进行建模。在此先验分布的基础上,通过运用贝叶斯估计方法从含噪系数中恢复原始系数,达到滤除噪声的目的。实验结果表明该方法在去除噪声的同时保留了图像的细节信息,取得了很好的降噪效果。 We proposed an algorithm of SAR speckle denoising method based on combination of statistic model of complex wavelet coefficients and significant estimation of noise variance. This method first employs a logarithmic transformation to change the multiplicative speckle into additive noise,then logarithmic image is processed by Dual-Tree Complex Wavelet Transform,and the model ,which is based on statistical distribution for the complex wavelet coefficients of SAR image,is set up. Under such prior distribution, Maximum A Posteriori(MAP) estimator is used to restore the wavelet coefficients from the noisy observations to achieve the goal of filtering noise. Experiment results show that the method can remove the noise while preserving significant image details and obtain the good performance.
出处 《遥感技术与应用》 CSCD 2008年第5期561-564,共4页 Remote Sensing Technology and Application
基金 博士点基金项目(20070357001) 安徽省高等学校自然科学研究重点项目(KJ2007A045)资助
关键词 统计模型 合成孔径雷达 双树复小波变换 贝叶斯估计 Statistical model Synthetic aperture radar Dualtree complex wavelet transform Bayesian estimation
  • 相关文献

参考文献6

  • 1Xie H,Pierce L E, Ulaby F T. SAR Speckle Reduction Using Wavelet Denoising and Markov Random Field Modeling [J]. IEEE Trans. on Geosciences and Remote Sensing,2002,10(4) :2196-2211.
  • 2Grace C,Bin Y,Vetterli M. Adaptive Wavelet Thresholding for Image Denoising and Compression[J]. IEEE Trans. on Image Proc. ,2000,9 (9) : 1532-1546.
  • 3Kingsbury N. The Dual-tree Complex Wavelet Transform: A New Efficient Tool for Image Restoration and Enhancement [C]. Proc. European Signal Processing Conference, EUSIPCO 98. Rhodes, 1998,319-322.
  • 4易翔,王蔚然.复数小波统计模型在图像降噪中的应用[J].光电工程,2004,31(8):69-72. 被引量:4
  • 5Donoho D L,Johnstone I M. Ideal Spatial Adaptation by Wavelet Shrinkag[J]. Biometrika, 1994,81 (3) : 425-455.
  • 6谢杰成,张大力,徐文立.一种小波系数模型在图像噪声参数估计中的应用[J].电子与信息学报,2004,26(5):673-678. 被引量:5

二级参考文献15

  • 1Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 1994,14(6): 425-455.
  • 2Mihcak M K, Kozintsev I, Ramchandran K, et al.. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters, 1999, 6(12): 300303.
  • 3Vidakovic B, Lozoya C B. On time-dependent .wavelet denoising. IEEE Trans. on Signal Processing, 1998, 46(9): 2549-2551.
  • 4Huber P J. Robust Statistical Procedures. Philadelphia: Saciety for Industrial and Applied Mathematics, 1977: 1-3.
  • 5Middleton D. Statistical-physical models of urban radio-noise environments-Part I: Foundations.IEEE Trans. on Electromagnetic Compatibility, 1972, EMC-14(1): 38-56.
  • 6Rissanen J. Stochastic Complexity in Statistical Inquiry. Singapore: World Scientific, 1998: 177-178.
  • 7Jiecheng Xie, Dali Zhang, Wenli Xu. Wavelet denoising in non-Gaussian noise using MDL principle, Proc. of WCICA'02, Shanghai, China, 2002: 2075-2079.
  • 8DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
  • 9DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
  • 10DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of American Statistical Assoc, 1995, 90(432): 1200-1224.

共引文献7

同被引文献28

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部