期刊文献+

微粒群并行聚类在客户细分中的应用 被引量:3

Customer segmentation application of PSO parallel cluster
下载PDF
导出
摘要 提出了基于自适应微粒群优化的并行聚类算法,采用了任务分布方案和部分异步并行通信,降低了计算时间。这种并行自适应微粒群算法结合了并行微粒群算法的快速寻优能力和自适应参数动态优化特性,保持了群体多样性从而避免了种群退化。最后将该算法应用于电信客户细分中。实验证明,该算法在并行机群上具有了较好的准确性、加速性和可扩展性。 The paper presented the parallel cluster algorithm of adaptive particle swarm optimization, which adopted task parallelization and partial asynchronous communication to decrease the computing time. The proposed algorithm combined the fast search optimum ability of parallel particle swarm optimization with parameters dynamical optimization property of adaptive. It could maintain the individual diversity and restrain the degenerate phenomenon. Finally, the presented algorithm was used to analyze the telecom customer segmentation. The experiments indicate the presented algorithm on the cluster maintains preferable accuracy, the speed-up and scaled-up.
出处 《计算机应用研究》 CSCD 北大核心 2008年第10期2987-2990,2994,共5页 Application Research of Computers
基金 重庆市自然科学基金资助项目(CSTC2007BB2406)
关键词 并行聚类 自适应 微粒群优化 电信客户细分 parallel cluster adaptive particle swarm optimization telecom customer segmentation
  • 相关文献

参考文献15

  • 1KIM J, WEI S, RUYS H. Segmenting the market of west Australian senior tourists using an artificial neural network [ J ]. Tourism Management,2003,24( 1 ) :25-34.
  • 2周兵,沈钧毅,彭勤科.集群环境下的并行聚类算法[J].计算机工程,2004,30(4):4-6. 被引量:7
  • 3GANTI V, GEHRKE J, REMAKRISHNAN R. CACTUS-clustering categorical data using summaries[ C ]//Proc of the 5th ACM SIGKDD Intemational Conference on Knowledge Discovery and Data Mining. New York :ACM, 1999 : 73-83.
  • 4WANG W, YANG J, MUNTZ R. STING: a statistical information grid approach to spatial data mining[ C ]//Proc of the 23th International Conference on Very Large Data Bases. Athens: Morgan Kauf- mann Publishers, 1997: 186-195.
  • 5CHENG C, FU A, ZHANG Y. Entropy-based subspace clustering for mining numerical data[ C]// Proc of the 5th ACM SIGKDD Conference. New Work: ACM, 1999: 84-93.
  • 6WARSCHKO T M, BLUM J M, TICHY W F. ParaStation: efficient parallel computing by clustering workstations: design and evaluation [J]. Journal of Systems Architecture, 1998, 44 (3) : 241-260.
  • 7BOUTSINAS B, GNARDELLIS. On distributing the clustering process[ J ]. Pattern Recognition, 2002, 23 (8) : 999-1008.
  • 8LAMEHAMEDI H, BENSAID A D, KEBBAL E G, et al. Adaptive programming: application to a semi-supervised point prototype clustering algorithm[ C ]//Proc of International Conference on Parallel and Distributed Processing Techiques. Nevada: CSREA Press, 1999: 2753 -2759.
  • 9陆建江,徐宝文.区间数据的并行模糊聚类算法[J].东南大学学报(自然科学版),2003,33(4):406-409. 被引量:9
  • 10SHI Y, KENNEDY J. Swarm intelligence[ C]//Proc of Swarm Intelligence Symposium. San Mateo: Morgan Kaufman Publishers, 2001 : 50-60.

二级参考文献14

  • 1[1]Warschko T M, Blum J M, Tichy W F. ParaStation: Efficient Parallel Computing by Clustering Workstations: Design and Evaluation. Journal of Systems Architecture, 1998, 44:241-260
  • 2[2]Zhang Tian, Ramakrishnan R, Livny M. BIRCH: An Efficient Data Clustering Method for Very Large Databases. ACM 0-89791-794-4/96/0006, 1996
  • 3[3]Ganti V, Gehrke J, Ramakrishnan R. CACTUS-clustering Categorical Data Using Summaries. KD D-99, ACM 1-58113-143-7/99/08, 1999
  • 4[4]Wang W, Yang J, Muntz R. STING: A Statistical Information Grid Approach to Spatial Data Mining. 23rd VLDB Conference, 1997
  • 5[5]Cheng Chunhuang, Fu A W, Zhang Yi. Entropy-based Subspace Clustering for Mining Numerical Data. KD D-99, ACM 1-58113-143-7/99/08, 1999
  • 6[6]Boutsinas B,Gnardellis. On Distributing the Clustering Process. Pattern Recognition Letters, 2002,23: 999-1008
  • 7Inderjit S D, Eharmendra S M. Concept decompositions for large sparse text data using clustering [ J]. Machine Learning, 2001, 42(1) : 143 - 175.
  • 8Hathaway R J, Davenport J W, Bezdek J C. Relational dual of the c-means algorithms [J]. Pattern Recognition, 1989,22(2) : 205 - 212.
  • 9Hathaway R J, BezAek J C. NERF c- means: non-euclidean relational fuzzy clustering [J]. Pattern Recognition, 1994,27(3) : 429 - 437.
  • 10Krishnapuram R, Joshi A, Yi L. A fuzzy relative of the kmedoids algorithm with application to web document and snippet clustering [ A]. In: Proceedings IEEE Ind Conference Fuzzy Systems-FUZZ_IEEE 1999[C]. Korea, 1999. 1281-1286.

共引文献13

同被引文献31

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部