摘要
提出了基于自适应微粒群优化的并行聚类算法,采用了任务分布方案和部分异步并行通信,降低了计算时间。这种并行自适应微粒群算法结合了并行微粒群算法的快速寻优能力和自适应参数动态优化特性,保持了群体多样性从而避免了种群退化。最后将该算法应用于电信客户细分中。实验证明,该算法在并行机群上具有了较好的准确性、加速性和可扩展性。
The paper presented the parallel cluster algorithm of adaptive particle swarm optimization, which adopted task parallelization and partial asynchronous communication to decrease the computing time. The proposed algorithm combined the fast search optimum ability of parallel particle swarm optimization with parameters dynamical optimization property of adaptive. It could maintain the individual diversity and restrain the degenerate phenomenon. Finally, the presented algorithm was used to analyze the telecom customer segmentation. The experiments indicate the presented algorithm on the cluster maintains preferable accuracy, the speed-up and scaled-up.
出处
《计算机应用研究》
CSCD
北大核心
2008年第10期2987-2990,2994,共5页
Application Research of Computers
基金
重庆市自然科学基金资助项目(CSTC2007BB2406)
关键词
并行聚类
自适应
微粒群优化
电信客户细分
parallel cluster
adaptive
particle swarm optimization
telecom customer segmentation