期刊文献+

主成分分析在电子鼻鉴别分析中存在的缺陷及其改进方法 被引量:4

The Defects and Improving Methods of Principal Component Analysis in Identification Analysis based on Electronic Nose
下载PDF
导出
摘要 主成分分析(PCA,Principle Component Analysis)在电子鼻鉴别分析中是一种常用的线形判别方法,然而,当所测样品等级质量差别很小,即样品挥发物成分基本接近时,电子鼻中各传感器所能反映样品差异的响应信息存在较大的重叠性或相关性,用传统的累计贡献率来选取前两个主成分进行鉴别分析效果往往不佳。本文从PCA降维的数学原理和传感器阵列特点出发,分析当样品等级质量差别很小、电子鼻各传感器响应信号重叠较大时这种选取主分量方法所存在的问题,在此基础上结合Wilks准则提出了选取主分量的新方法。实例证明了所提出的主成分选取方法是有效的。 Principal Component Analysis (PCA) is a popular method for linear discriminant analysis in the identification analysis of electronic noses. However, when the measured samples have smaller differences in quality, namely, the volatile components of samples are almost same, the response information of the electronic sensors has greater superposition and relativity. The identification effects using the first two principal components by traditional cumulative contribution are often poor. In this paper, the main defects of PCA method are discussed based on the mathematical principle of PCA and the characteristics of sensor array under this case. At the same time, a new method of selecting principal components combined with Wilks rule is given and proved effectively by example.
作者 周海涛 殷勇
机构地区 河南科技大学
出处 《传感器世界》 2008年第10期39-42,共4页 Sensor World
关键词 电子鼻 主成分分析 相关性 Wilks准则 electronic nose Principal Component Analysis (PCA) correlativity Wilks rule
  • 相关文献

参考文献6

  • 1张红梅,王俊,叶盛,于慧春,田晓静.电子鼻传感器阵列优化与谷物霉变程度的检测[J].传感技术学报,2007,20(6):1207-1210. 被引量:61
  • 2阎平凡.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2003.62-86.
  • 3Huichun Yu, Jun Wang. Discrimination of LongJing green-tea grade by electronic nose[J]. Sensors and Actuators B, 2007,122:134-140.
  • 4Huichun Yu ,Jun Wang. Identification of green tea grade using different feature of response signal from E-nose sensors[J]. Sensors and Actuators B ,2008,128:455-461.
  • 5殷勇,田先亮,邱明.基于人工嗅觉的酒类质量稳定性判别方法研究[J].仪器仪表学报,2005,26(6):565-568. 被引量:7
  • 6Y. Yin , X. Tian. Classification of Chinese drinks by a gas sensors array and combination of the PCA with Wilks distribution[J]. Sensors and Actuators B, 2007,124: 393-397.

二级参考文献17

  • 1潘天红,陈山,赵德安.电子鼻技术在谷物霉变识别中的应用[J].仪表技术与传感器,2005(3):51-52. 被引量:49
  • 2边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 3Dae-Sik Lee,Jong-Kyong Jung ,Jun-Woo Lim,et al.Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis[J].Sensors and Actuators,2001,B(7):228~236.
  • 4Natale C D,Davide F A M,Amico A D,et al.An electronic nose for the recognition of the vineyard of a red wine[J].Sensors and Actuators,1996,B(3):83~88.
  • 5钱仲候,王成斌,等.多元质量控制[M].北京:机械工业出版社,1995.31~64.
  • 6Paolesse R,Alimelli A,Martinelli E,et al.Detection of Fungal Contamination of Cereal Grain Samples by an Electronic Nose[J].Sensors and Actuators B,(article in press).
  • 7Jonsson A,Winquist F,Schnurer J,et al.Electronic Nose for Microbial Quality Classification of Grains[J].International Journal of Food Microbiology,1977,35:187-193.
  • 8Evans P,Persaud K C,McNeish A S,et al.Evaluation of a Radial Basis Function Neural Network for the Determination of Wheat Quality from Electronic Nose Data[J].Sensors and Actuators B,2000,69:348-358.
  • 9Abramson D,Hulasare R,York R K,et al.Mycotoxins,Ergosterol,and Odor Volatiles in Durum Wheat During Granary Storage at 16% and 20% Moisture Content[J].Journal of Stored Products Research,2005,41:67-76.
  • 10Olsson J,B(o)rjesson T,Lundstedt T,et al.Volatiles for Mycological Quality Grading of Barley Grains:Determinations Using Gas Chromatography-Mass Spectrometry and Electronic Nose[J].International Journal of Food Microbiology,2000,59:167-178.

共引文献90

同被引文献46

引证文献4

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部