期刊文献+

一种多重最小支持度关联规则挖掘算法 被引量:10

An algorithm for mining association rules with multiple minimum supports
下载PDF
导出
摘要 针对单一最小支持度挖掘关联规则不能反应不同数据项出现频度与性质的问题,提出了一个基于频繁模式树的多重支持度关联规则挖掘算法MSDMFIA(Multiple minimum Supports for Discover Maximum Fre-quent Item sets Algorithm),根据不同数据项的特点定义多重支持度,通过挖掘数据库中的最大频繁项目集,计算最大频繁候选项目集在数据库中的支持度来发现关联规则.该算法可以解决关联规则挖掘中经常出现的稀少数据项问题,并解决了传统的关联规则挖掘算法中的生成频繁候选集和多次扫描数据库的性能瓶颈.实验结果表明,本文提出的算法在功能和性能方面均优于已有算法. Aiming at the problem that traditional methods with only one minsup can not completely reflect different appearing frequencies and natures of different data items, based on FP-Tree, a new algorithm is proposed called MSDMFIA (Multiple minimum Supports for Discover Maximum Frequent Item sets Algorithm). The algorithm allows users to specify multiple minsups to reflect various items natures. Through mining the maximum frequent item sets, calculating minsups of the maximum candidate frequent item sets, the association rules can be discovered. The algorithm resolves the bottlenecks in traditional algorithms, e. g. , the rare item problem, the frequent generation of candidate item sets and database scanning. Experimental results show that functionality and performance of the proposed algorithm is significantly improved compared with existing algorithms.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2008年第9期1447-1451,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60871042) 国家高技术研究发展计划资助项目(2003AA118010 2007AA01Z179)
关键词 数据挖掘 关联规则 最小支持度 频繁模式树 多重支持度 data mining association rule minimum support FP-Tree multiple supports
  • 相关文献

参考文献10

  • 1AGGARWAL C, YU P. Online generation of association rules[ C]// International Conference on Data Engineering (ICDE). Orlando : [s.n.].1998:402 - 411.
  • 2AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ C ]//ACM/SIGMOD Annual Conference on Management of Data. Washingon : [ s. n.], 1993:207 - 210.
  • 3AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules [ C ]//International Conference on Very Large Data Bases(VLDB). Santiago de Chile: [s. n. ], 1994:487 - 499.
  • 4HOUTSMA M, SWAMI A. Set-oriented mining for association rules in relational databases [ C ]// International Conference on Data Engineering. Los Alamitos: IEEE Computer Society Press, 1995:25 - 33.
  • 5SAVASERE A, OMIECINSKI E, NAVATHE S M. An efficient algorithm for mining association rules[ C ]//International Conference on Very Large Data Bases (VEDB). Zurich :[s. n.], 1995:432 - 444.
  • 6LIND I, KEDEM Z M. A new algorithm for discovering the maxhnum frequent set[ C ]//Proceedings of the 6th European Conference on Extending Database Technology. Heidelberg: pringer - Verlag, 1998:105 - 119.
  • 7路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113
  • 8欧阳为民,郑诚,蔡庆生.数据库中加权关联规则的发现[J].软件学报,2001,12(4):612-619. 被引量:96
  • 9宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 10刘君强,孙晓莹,王勋,潘云鹤.挖掘最大频繁模式的新方法[J].计算机学报,2004,27(10):1328-1334. 被引量:15

二级参考文献12

  • 1[1]Agrawal R., Imielinski T., Swami A.. Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D. C. , USA, 1993, 207~216
  • 2[2]Lin D-I. , Kedem Z. M.. Pincer-search: A new algorithm for discovering the maximum frequent set. In: Proceedings of the 6th International Conference on Extending Database Technology, Valencia, Spain, 1998, 105~119
  • 3[3]Bayardo R. J.. Efficiently mining long patterns from databases.In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA,1998, 85~93
  • 4[4]Aggarwal C. , Agarwal R. , Prasad V. V. V.. Depth first generation of long patterns. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Boston, MA, USA, 2000, 108~118
  • 5[5]Burdick D. , Calimlim M. , Gehrke J.. MAFIA: A maximal frequent itemset algorithm for transactional databases. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2001, 443~452
  • 6[6]Agrawal R. , Srikant R.. Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, 1994, 487~499
  • 7[7]Liu Jun-Qiang, Pan Yun-He, Wang Ke, Han Jia-Wei. Mining frequent item sets by opportunistic projection. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Alberta, Canada, 2002, 229~238
  • 8[8]Wang Ke, Liu Tang, Han Jia-Wei, Liu Jun-Qiang. Top down FP-growth for association rule mining. In: Proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Taipei, Taiwan, China, 2002, 334~340
  • 9Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页
  • 10Agrawal R,Proc the 11th Inter Conference on Data Engineering,1995年,3页

共引文献318

同被引文献141

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部