期刊文献+

一个可验证的门限多秘密共享方案 被引量:1

A verifiable threshold multi-secret sharing scheme
下载PDF
导出
摘要 针对Lin-Wu方案容易受恶意参与者攻击的缺点,基于大整数分解和离散对数问题的难解性,提出了一个新的可验证(t,n)门限多秘密共享方案,有效地解决了秘密分发者和参与者之间各种可能的欺骗.在该方案中,秘密分发者可以动态的增加共享的秘密;各参与者的秘密份额可以重复使用,每个参与者仅需保护一个秘密份额就可以共享多个秘密.与现有方案相比,该方案在预防各种欺骗时所需的指数运算量更小,而且,每共享一个秘密仅需公布3个公共值.分析表明该方案比现有方案更具吸引力,是一个安全有效的秘密共享方案. Based on the intractability of the factorization problem and the discrete logarithm problem, a verifiable (t, n)-threshold multi-secret sharing scheme is presented to overcome the drampack of Lin-Wu scheme that is easy to be attacked by any malicious participant. The proposed scheme provides an efficient solution to the cheating problems .between the dealer and each participant. In this scheme, the dealer can share any new secret among these participants dynamically, and only one reusable secret shadow is required to be kept by each participant for sharing multiple secrets. Compared with the existing schemes, the proposed scheme reduces the number of modular exponentiation operations in preventing the dealer or each participant from cheating, and only 3 public values are required for sharing a secret, which makes the proposed scheme more attractive in computation and communication than the existing ones. Analyses show that this scheme is a secure and efficient secret sharing scheme.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2008年第9期1462-1465,共4页 Journal of Harbin Institute of Technology
基金 国家基础研究发展规划资助项目(G1999035805) 国家自然科学基金资助项目(60803151) 陕西省自然科学基金资助项目(2007F37) 中国博士后科学基金资助项目(20060401008,20070410376)
关键词 秘密共享 多秘密共享 骗子识别 可验证秘密共享 secret sharing multi-secret sharing cheater identification verifiable secret sharing
  • 相关文献

参考文献12

  • 1SHAMIR A. How to share a secret [J]. Communications of the ACM, 1979, 22(11) :612 -613.
  • 2BLAKLEY G. Safeguarding cryptographic keys [ C ]// Proc AFIPS 1979 Natl Conf. New York: AFIPS press, 1979:313 -317.
  • 3LIN T Y, WU T C. (t,n) threshold verifiable multisecret sharing scheme based on faetorisation intractability and discrete logarithm modulo a composite problems [J ]. IEE Proc Comput Digit Tech, 1999, 146(5): 264-268.
  • 4PANG L J, WANG Y M. A new (t, n) multi-secret sharing scheme based on Shamir's secret sharing [J]. Applied Mathemalics and Compulation, 2005, 167(2) : 840 - 848.
  • 5JACKSON W A, MARTIN K M, HELLMAN C M. On secret sharing systems [ C]//Advances in Cryptology, Proceedings of Asiacrypt94, LNCS 917. Berlin: Springer-Verlag, 1994 : 42 - 54.
  • 6CHOR B, GOLDWASSER S, MICAH S, et al. Verifiable secret sharing and achieving simultaneity in the presence of faults [C]// Proc 26th IEEE Syrup FOCS. Portland, Oregon : IEEE Computer Society, 1985:251 - 260.
  • 7STADLER M. Publicly verifiable secret sharing Advances in Cryptology[ C]//Eurocrypt'96, LNCS 1070. Berlin : Springer - Verlag, 1996 : 190 - 199.
  • 8HARN L. Efficient sharing (broadcasting) of muhiple secret [J]. IEE Proc Comput Digit Yech, 1995, 142 ( 3 ) : 237 - 240.
  • 9HE W H, WU T S. Comment on Lin -Wu (t,n)- threshold verifiable multisecret sharing scheme [ J ]. IEE Proc Comput Digil Tech, 2001, 148(3) : 139.
  • 10CHANG T Y, HWANG M S, YANG W P. An improvement on the Lin - Wu (t,n) threshold verifiable multisecret sharing scheme[J].Applied mathematics and computation, 2005, 163(1 ): 169-178.

同被引文献6

  • 1SHAMIR A. How to share a secret [ J ]. Comm of ACM, 1979, 22(1) : 612 -613.
  • 2BLAKLEY G R. Safeguarding cryptographic keys[ C ] ,//Proc NCC, AFIPS Press, Montvale, 1979, 48: 313 -317.
  • 3ASMUTH C, BLOOM J. A Modular approach to key safegrarding[ J]. IEEE Transactions On Information Theory, 1983, 29(2): 208-210.
  • 4KARNIN E D, GREEN J W, HELLMAN M E. On sharing secret systems[J]. IEEE Transactions On In- formation Theory, 1983, 29 ( 1 ) : 35 - 41.
  • 5LIU Heng, WU Hua-jian. A cheating-proof secret-sha- ring scheme capable of differentiating the roles of the secret sharers[ J ]. Journal of zhengzhou : Natural sci- ence,2006,38(3) : 35 -38.
  • 6周洪伟,郭渊博,李沁.门限多重秘密共享方案[J].计算机工程与设计,2008,29(8):1946-1947. 被引量:9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部