期刊文献+

Shell evolution at N=20 in the constrained relativistic mean field approach

Shell evolution at N=20 in the constrained relativistic mean field approach
原文传递
导出
摘要 The shell evolution at N = 20, a disappearing neutron magic number observed experimentally in very neutron-rich nuclides, is investigated in the constrained relativistic mean field (RMF) theory. The trend of the shell closure observed experimentally towards the neutron drip-line can be reproduced. The predicted two-neutron separation energies, neutron shell gap energies and deformation parameters of ground states are shown as well. These results are compared with the recent Hartree-Fock-Bogliubov (HFB-14) model and the available experimental data. The perspective towards a better understanding of the shell evolution is discussed. The shell evolution at N = 20, a disappearing neutron magic number observed experimentally in very neutron-rich nuclides, is investigated in the constrained relativistic mean field (RMF) theory. The trend of the shell closure observed experimentally towards the neutron drip-line can be reproduced. The predicted two-neutron separation energies, neutron shell gap energies and deformation parameters of ground states are shown as well. These results are compared with the recent Hartree-Fock-Bogliubov (HFB-14) model and the available experimental data. The perspective towards a better understanding of the shell evolution is discussed.
作者 孙保华 李剑
出处 《Chinese Physics C》 SCIE CAS CSCD 北大核心 2008年第11期882-885,共4页 中国物理C(英文版)
基金 Supported by Major State Basic Research Developing Program (2007CB815000) National Natural Science Foundationof China (10435010,10775004,10221003)
关键词 shell quenching N = 20 relativistic mean field theory nuclear deformation shell quenching, N = 20, relativistic mean field theory, nuclear deformation
  • 相关文献

参考文献18

  • 1[1]Ring P,Schuck P.The Nuclear Many-Body Problem.Berlin:Springer,1980
  • 2[2]Audi G,Wapstra A H,Thibault C.Nucl.Phys.A,2003,729:337
  • 3[3]Penionzhkevich Yu E.Hyperfiue Inter.,2006,171:157
  • 4[4]Ozawa A et al.Phys.Rev.Lett.,2000,84:5493
  • 5[5]Sarazin F et al.Phys.Rev.Lett.,2006,84:5062
  • 6[6]Warburton E K,Becket J A,Brown B A.Phys.Rev.C,1990,41:1147
  • 7[7]Goriely S,Samyn M,Pearson J M.Phys.Rev.C,2007,75:064312
  • 8[8]MENG J,Ring P.Phys.Rev.Lett.,1996,77:3963
  • 9[9]MENG J,Ring P.Phys.Rev.Lett.,1998,80:460
  • 10[10]ZHOU S G,MENG J,Ring P.Phys.Rev.Lett.,2003,91:262501

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部