期刊文献+

基于模糊控制的嵌入式智能轮椅控制研究

Control Research for Embedded Intelligent Wheelchair Based on Fuzzy Control
下载PDF
导出
摘要 设计了一种新的智能轮椅,该轮椅的控制器应用了嵌入式技术和模糊控制技术,运用了先进的传感设备,使之能够感知环境信息,具有实时避障功能。对智能轮椅的避障过程进行了仿真,得到比较好的控制效果,并证明用模糊控制策略实现实时避障功能的可行性。 This paper present a newly developed intelligent wheelchair, the controller of the wheelchair adopts embedded technology and fuzzy control technology,the application of advanced sensor equipment make it to perceive environmental information and have real-time obstacle avoidance function.The obstacle avoidance process of intelligent wheelchair is emulated,and controlling results are satisfying.Results prove that using fuzzy control strategy on real-time obstacle avoidance function is feasible.
出处 《工业控制计算机》 2008年第10期20-22,共3页 Industrial Control Computer
基金 河北省科技攻关项目(04547007D)
关键词 智能轮椅 嵌入式 模糊控制 避障 intelligent wheelchair,embedded,fuzzy control,obstacle avoidance
  • 相关文献

参考文献8

  • 1何清华,黄素平,黄志雄.智能轮椅的研究现状和发展趋势[J].机器人技术与应用,2003(2):12-16. 被引量:53
  • 2杜宇,吴燮华.电动轮椅控制器的设计与实现[J].电力电子技术,2004,38(1):63-65. 被引量:11
  • 3陈春林,陈宗海,卓睿.基于多超声波传感器的移动机器人目标识别[J].模式识别与人工智能,2005,18(5):602-607. 被引量:7
  • 4A sonar approach to obstacle detection for a vision-based autonomous wheelchair,Guitlermo Del Castillo,Steven Skaar, Antonio Cardenas, Robotics and Autonomous Systems 54 (2006) 967-981
  • 5Obstacle avoidance for a mobile robot:A neuro-fuzzy ap proach,G.N MarichaI,L.Acosta,L.Moreno, Fuzzy Sets and Systems 124(2001): 171-179
  • 6Tyu Smart wheelchair Based on Ultrasonic Positioning System, HyungJun Kim,DaeHyun,ICCHP(2006),LNCS 4061 :1014-1020
  • 7Mechatronic systems-Innovative products with embedded controI,Rolf Isermann,Control Engineering Practice 16 (2008) 14-29
  • 8Helene Prigent,Optimization of power wheelchair control for patients with severe duchenne muscular dystrophy,Nadine Pellegrini,Bruno Guillon,Ne.uromuscular Disorders 14 (2004) 297-300

二级参考文献13

  • 1陈春林,陈宗海,卓睿.基于多超声波传感器的自主移动机器人探测系统[J].测控技术,2004,23(6):11-13. 被引量:27
  • 2Maaref H, Barret C. Sensor-Based Navigation of a Mobile Robot in an Indoor Environment. Robotics and Autonomous Systems, 2002, 38:1-18.
  • 3Hauskrecht M, Meuleau N, Boutilier C, etal. Hierarchical Solution of Markov Decision Processes Using Macro-Actions. In:Cooper G F, Moral S, eds. Proc of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 1998, 220-229.
  • 4Wiering M, Schmidhuber J. HQ-Learning. Adaptive Behavior,1997, 6(2): 219-246.
  • 5Barto A G, Mahanevan S. Recent Advances in Hierarchical Reinforcement Learning. Discrete Event Dynamic Systems: Theory and Applications, 2003, 13~ 41-77.
  • 6Sutton R, Precup D, Singh S. Between MDPs and Semi-MDPs:A Framework for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, 1999, 112:181-211.
  • 7Ratner D, McKerrow P. Navigating an Outdoor Robot along Continuous Landmarks with Ultrasonic Sensing. Robotics and Autonomous Systems, 2003, 45:73-82.
  • 8Barshan B, Ayrulu B, Utete S W. Neural Network-Based Target Differentiation Using Sonar for Robotics Applications. IEEE Trans on Robotics and Automation, 2000, 16(4): 435-442.
  • 9Ayrulu B, Barshan B. Reliability Measure Assignment to Sonar for Robust Target Differentiation. Pattern Recognition, 2002,35(6): 1403-1419.
  • 10Pagac D, Nebot E M, Durrant-Whyte H. An Evidential Approach to Map-Building for Autonomous Vehicles. IEEE Trans on Robotics and Automation, 1998, 14(4): 623-629.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部