期刊文献+

由生成子范畴导出的t-结构 被引量:3

t-Structure arising from a generating subcategory
原文传递
导出
摘要 作者根据Keller和Vossieck提出的Aisle的概念及其与t-结构的关系,从三角范畴的一个特殊的生成子范畴出发,得到了该三角范畴上的一个t-结构,这个t-结构的heart恰好就是那个特殊的生成子范畴. A t-structure on an arbitrary triangulated category is obtained from its generating subcategory by constructing an aisle in the sense of Keller and Vossieck. Furthermore, the heart of this t-structure is just the generating subcategory.
作者 谢云丽
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期1037-1042,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金"973"项目(0020105409902)
关键词 三角范畴 T-结构 生成子范畴 triangulated category, t-structure, generating subcategory
  • 相关文献

参考文献4

  • 1Beilinson A A, Bernstein J, Deligne P. Faisceaux pervers[J]. Asteisque, 1982, 100: 1.
  • 2Tarrio L A, Lopez A J, Jose M. Souto Salorio Construction of t-structure and equivalences of derived categories[ J ]. Trans Ames Math Soc, 2003, 355 (6) : 2523.
  • 3Auslander M, Reiten I. Applications of contravariantly finite subcategories [J ]. Advances in Mathematics, 1991, 86: 111.
  • 4Keller B, Vossieck D. Aisles in derived categories[J]. Bull Soc Math Belg, 1988, 40: 239.

同被引文献16

  • 1Weibel C A. An introduction to homological algebra [M]. Beijing: China Machine Press, 2004.
  • 2Keller B. Deriving DG categories [J]. Ann Sci 6cole Norm Sup, 1994, 27(4):63.
  • 3Christensen J D. Ideals in triangulated categories [J]. AdvinMath, 1988, 136: 284.
  • 4Bondal A, Van Den Bergh M. Generators and representability of functors in commutative and noncom- mutative geometry[J]. Most Math J, 2003, 3 : 1.
  • 5Krause H, Kussin D. Rouquier's theorem on representation dimension [ EB/OL ]. arXiv: math/ 0505055v2 [math. RT]13 Sep 2005.
  • 6Oppermann S. Lower bounds for Auslander's representation dimension[EB/OL], http:// www. math. ntnu. no/-opperman/arbeit, pdf.
  • 7Auslander M, Smal# S. Almost split seqenees in sub- eategories[J]. J Algebra, 1981, 69: 426.
  • 8Auslander M, Reiten I, Smalo S. Representation theory of Artin algebras[M]. Cambridge~ Cambridge Univ Press, 1995.
  • 9Auslander M, Reiten I. Applications of contravari- antly finite subcategories[J]. Adv Math, 1991, 86: 111.
  • 10Auslander M, Reiten I. Homologieal finite subcate- gories, in "Representation Theory of Algeras and Re- lated Topies'[M]. Cambridge~ Cambridge Universi- ty Press, 1992.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部