期刊文献+

基于色度偏差和亮度偏差的运动目标检测方法 被引量:1

A Moving Object Detection Method Based on Brightness Distortion and Color Distortion
下载PDF
导出
摘要 论述了一种实时的前景-背景分割运动目标检测方法。用中值法获得背景模型;为避免规范化色彩的不确定性,背景图像像素点的亮度被比例缩放为当前帧对应像素点的亮度,在此基础上求出色度偏差,并基于当前帧和背景帧的颜色偏差和亮度偏差来检测目标;最后用数学形态学滤波及连通分量分析的方法进行去噪、区域连通等后处理。方法建立了科学的亮度与颜色的关系模型,充分利用了图像的灰度信息和色彩信息。实验表明,方法具有很好的检测效果。 This paper presents a real - time algorithm of foreground - background segmentation for Moving Object Detection. The background model is generated by using the medium pixel values from an image sequence. In order to avoid the instability of normalized colors, the brightness of a background pixel is geometrically rescaled to the brightness of the current - frame pixel, and in this way the color distortion is calculated. Then subtract the current image from the background model and detect moving objects in color distortion and bright distortion. At last image morphologic filtering and connected component measurement are employed to remove the flecks of noise in the segmented binary image or detect the connectivity of different object area. Evaluation shows that this algorithm is simple and effective.
出处 《计算机仿真》 CSCD 2008年第10期194-196,201,共4页 Computer Simulation
关键词 减背景 色度偏差 亮度偏差 形态学滤波 Background subtraction Color distortion Brightness distortion Morphologic filtering
  • 相关文献

参考文献11

二级参考文献85

  • 1周子坚,何世达.复杂背景图象的一种分割方法[J].上海工业大学学报,1993,14(5):412-417. 被引量:2
  • 2刘健庄,谢维信.高效的彩色图像塔形模糊聚类分割方法[J].西安电子科技大学学报,1993,20(1):40-46. 被引量:5
  • 3唐旭辉,方勇.基于.NET的下一代网络视频监控系统的设计[J].微计算机信息,2005,21(1):49-50. 被引量:25
  • 4刘重庆,程华.分割彩色图像的一种有效聚类方法[J].模式识别与人工智能,1995,8(A01):133-138. 被引量:7
  • 5Collins R, Lipton A,Kanade T,et al. A System for Video Surveillance and Monitoring.Tech. Report CM U-RI-TR-00-12,Robotics Institute,Carnegie Mellon University,2000-05.
  • 6Koller D, Daniilidis K,Nagel H.Model-bascd Object Tracking in Monocular Image Sequences of Road traffic Scenes.International Journal of Computer Vision, 1993,10(3).
  • 7Wren C R,Azarbayejani A,Darrell T.Plinder:Real_time Tracking of the Human Body.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1977-07,7.
  • 8Haritaoglu I,Davis L S,Harwood D.W4 Who? When? Where? What? A Rreal Time System for Detecing and Tracking People.In FGR98,1998.
  • 9Mclvor M.Background Subtraction Techniques.IVCNZ00, Hamilton,New Zealand, 2000-11.
  • 10Toyama K,Krumm J.Brumitt B.et al.Wallowver; Principles and Practice of Background Maintenance.ln International Conference on Computer Vision (1999).

共引文献598

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部