期刊文献+

人脸识别中线性判别分析的单参数正则化方法 被引量:4

A Single-Parameter-Regularized Method in Linear Discriminant Analysis for Face Recognition
下载PDF
导出
摘要 将线性判别分析(LDA)应用于人脸识别中时,小样本问题常常出现,即,通常可获得的人脸训练样本个数远小于训练样本的维数,从而导致类内散布矩阵Sw奇异,于是得到病态的特征值问题。使用数学工具探讨了这一现象的实质。此外,提出了一种单参数正则化方法来解决小样本问题,该方法以满足tr(Swr)=tr(Sw)为条件,用一个可逆矩阵Srw去估计奇异的类内散布矩阵Sw。在使用小波变换对人脸像降维预处理后进行了该方法与传统LDA的对比实验。实验表明,该方法可大幅提高LDA的识别性能。 When Linear Discriminant Analysis (LDA) is applied to face recognition, the Small Sample Size Problem often occurs because the number of training samples is far smaller than the dimensionality of training sampies, which leads to a singular within - class scatter matrix S, and an ill - posed eigenvalue problem. In this paper, mathematical tools are used to explore the nature of this phenomenon. Moreover, a Single - Parameter - Regularized method is proposed to solve the Small Sample Size Problem. This method is to find an invertible matrix Sw^r to estimate the singular within - class scatter matrix Sw based on tr ( Sw^r ) = tr ( Sw ). After the dimensionality - reduction pre - process of human face images using wavelet transform, the proposed method is compared with the traditional LDA experimentally. Experiment results show that the proposed method improves the recognition performance of LDA greatly.
作者 刘笑嶂
出处 《计算机仿真》 CSCD 2008年第10期215-218,共4页 Computer Simulation
关键词 人脸识别 线性判别分析 小样本问题 正则化 Face recognition Linear diseriminant analysis(LDA) Small sample size problem regularized
  • 相关文献

参考文献9

  • 1K Fukunnaga. Introduction to Statistical Pattern Recognition[ M ]. New York : Academic Press, 1990.
  • 2H Yu, J Yang. A direct LDA algorithm for highdimensional data - with application to face recognition [ J ]. Pattern Recognition 2001, 34:2067-2070.
  • 3W Zhao, R. Chellappa, P J Phillips. Subspace linear discriminant analysis for face recognition [ R ]. Technical Report CAR - TR - 914, CS - TR - 4009, University of Maryland at College Park, USA, 1999, IEEETrans.
  • 4P N Belhumeur, J P Hespanha, D J Kriegman. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [ J ]. IEEE Trans. Pattern Anal. Mach. InteR. 1997,19 (7): 711 - 720.
  • 5D Q Dai and P C Yuen. Regularized diseriminant analysis and its applications to face recognition ~ J ]. Pattern Recognition, 2003, 36 : 845 - 847.
  • 6W S Chert, P C Yuen, J Huang and D Q Dai. Kernel machinebased one - parameter regularized Fisher discriminant method for face recognition[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B, 2005,35(4) : 659 -669.
  • 7D Q Dai and P C Yuen. Wavelet based discriminant analysis for face recognition [ J ]. Applied Mathematics and Computation, 2006,175 : 307 -318.
  • 8程云鹏.矩阵论[M].西安:西北工业大学出版社,2001..
  • 9W J Krzanowski, P Jonathan, W V McCarthy, and M. R. Thomas. Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data[ J]. Applied Statistics, 1995, 44:101 - 115.

共引文献43

同被引文献43

  • 1谢美华,王正明.用偏微分方程作图像分析与处理[J].激光与光电子学进展,2005,42(8):36-40. 被引量:4
  • 2杨立才,李佰敏,李光林,贾磊.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241. 被引量:68
  • 3李同磊,刘伯强,李可,于兰兰.基于脑电信号的手指动作识别[J].山东科学,2006,19(1):1-5. 被引量:2
  • 4P Kalocsai,C von der Malsburg,J Horn.Face recognition by statistical analysisof feature detectors[J].Image and Vision Computing 2000,(18):273-278.
  • 5Guo Guodong,S Z Li,K L Chan.Support vector machines for face recognition[J].Image and Vision Computing,2001,19:631-638.
  • 6B Moghaddam.Principal manifolds and probabilistic subspaces for visual recognition[J].IEEE Trans on PAMI,2002,24(6):780-788.
  • 7郑逢德,杨友良.支持向量机的人脸检测方法[J].信息技术,2007,31(8):78-80. 被引量:5
  • 8NCristianini JShawe-Taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 9DUDA R O, HART P E, STORK D G. Pattern classification [ M]. New York: John Wiley & Sons, 2000.
  • 10BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisheffaces: Recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1997, 19(7) : 711 - 720.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部