期刊文献+

基于色彩空间的运动物体阴影分割 被引量:1

Color Space Based Shadow Segmentation of Moving Object
下载PDF
导出
摘要 基于视频序列的移动物体提取在各领域有着积极的研究意义。传统方法从灰度域提取物体特征向量往往无法准确给出物体位置等信息。而在色彩域内,可利用多种特征向量进行有效的图像分割。为了提取可视化图形中的阴影区域,提高车辆识别与跟踪的鲁棒型,通过在RGB色彩空间内利用欧式度量法和HSI色彩空间中的特征向量实现上述目的。并建立了统计模型并通过区域增长的理论利用车辆空间信息避免了近似色车辆带来的误判,提高算法的可靠性。实验结果表明,运动物体的阴影可以取得较好地提取结果。 The study of moving object based on video sequence has its positive significance in all areas. Traditional methods usually fail to tell the object information precisely through feature vectors subtracted in gray area. Various vectors can be used within the color area for effective image segmentation. Euclidean distance is computed for RGB color space and feature vectors are constructed in HSI space to realize the shadow segmentation. In order to im- prove the robustness and reliability of the algorithm, a statistic model is formed, and the theory region growing is introduced to avoid the false decisions caused by the vehicles of similar color to the shadow. The result of experiments show that it can figure out the shadow effectively.
出处 《计算机仿真》 CSCD 2008年第10期254-256,271,共4页 Computer Simulation
关键词 阴影分割 欧氏距离 特征向量 统计模型 Shadow segmentation Euclidean distance Feature vectors Statistic model
  • 相关文献

参考文献7

二级参考文献115

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献286

同被引文献11

  • 1郭斯羽,张煦芳.一种基于模型的自适应阈值分割算法[J].浙江大学学报(工学版),2005,39(12):1950-1953. 被引量:6
  • 2Bregler C, Loeb L, Chuang E, et al, Turning to the mas- ters: Motion eapturing cartoons [ C ]// SIGGRAPH' 02. 2002:399-407.
  • 3Wang H, Li H. Cartoon motion capture by shape matching [ C ]//Proceedings of the 10th Pacific Conference on Com- puter Graphics and Applications. 2002:454-456.
  • 4Pan Junjun, Zhang Jian J. Sketch-based skeleton-driven 213 animation and motion capture [ C l// Transactions on Edutainment VI. 2011 : 164-181.
  • 5Juan C N De, Bodenheimer B. Re-using traditional anima- tion: Methods for semi-automatic segmentation and inbe- tweening [ C ]// Proceedings of the 2006 ACM SIG- GRAPH/Eurographics Symposium on Computer Animation. 2006 : 223-232.
  • 6Rastegari M, Gheissari N. Multi-scale cartoon motion cap- ture and retargeting without shape matching[ C l//DICTA' 08. 2008:320-326.
  • 7Rastegari M, Rouhani M, et al. Cartoon motion capturing and retargeting by rigid shape manipulation[ C ]//DICTA' 09. 2009:498-504.
  • 8Alexa M, Cohen-Or D, Levin D. As rigid-as-possible shape interpolation [ C ]//Proceedings of the 27th Annual Confer- ence on Computer Graphics and Interactive Techniques. 2000 : 157-164.
  • 9夏小玲,柴望.基于Shape Context的形状匹配方法的改进[J].东华大学学报(自然科学版),2009,35(1):79-83. 被引量:6
  • 10贾立好,邹建华.基于新的阈值化方法的背景减法改进[J].自动化学报,2009,35(4):394-400. 被引量:12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部