期刊文献+

提高阵列天线DOA估计的改进MUSIC算法 被引量:4

An Improved MSUSIC Algorithm for Enhancing the DOA Estimation of Array Antenna
下载PDF
导出
摘要 在阵列信号处理中,经典的MUSIC算法是建立在非相干信号模型的基础上的,对于低信噪比条件下的相干多径信号和信源间隔比较近的信号,MUSIC算法难以估计出它们的DOA。利用求根MUSIC算法在小样本空间性能优异的特点,在重构数据协方差矩阵的基础上,通过理论推导,这里给出了一种基于求根MUSIC的改进算法,用于提高低信噪比条件下的相干多径信号与信源间隔比较近的信号DOA谱分辨能力,计算机仿真结果验证了这种方法的有效性.且与修正MUSIC算法相比较,谱分辨能力有明显的提高。 The classical MUSIC algorithm is based on the model of uncorrelated signals in array signal processing, it will be ineffective for both the coherent multi - path signals and adjacent signals with small SNR. Making use of the excellent performance characteristic of root - music algorithm in small sample space, this paper brings forward a modified root -music algorithm based on rebuilding data covariance matrix by deduction to enhance the spectrum resolving power of both coherent multi - path signals and adjacent signals with lower SNR. The computer simulation verifies that it is effective, and its spectrum resolving power is obviously improved compared to modified MUSIC algorithm.
作者 袁峰 张捷
出处 《计算机仿真》 CSCD 2008年第10期340-343,共4页 Computer Simulation
关键词 相干多径 方位估计 数据协方差 谱分辨能力 Coherence multi - path DOA estimation Data covariance Spectrum resolving power
  • 相关文献

参考文献6

  • 1Nilesh Shahapurkar and C S Ramalingam. Threshold Performance of MUSIC When Using the Forward - Backward Data Matrix [ J ]. Signal Processing Letters, IEEE 2006,13 (2) :80 - 83.
  • 2J Selva. Computation of spectral and root Msucic through real polynomial rooting [ J ]. Signal Processing, IEEE Trans on ASSP, 2005,53 ( 5 ) : 1923 - 7927.
  • 3D Kundu. Modified MUSIC algorithm for estimating DOA of signals [ J ]. Signal Processing, 1996,48 ( 3 ) : 85 - 89.
  • 4R O Schmidt. Multiple emitter location and signal parameter estimatio [ J 1. IEEE Tran on AP( SO018 - 926X), 1986, AP - 34 ( 3 ) : 276 - 280.
  • 5高星辉,张承云,常鸿森.改进MUSIC算法对信号DOA的估计[J].系统仿真学报,2005,17(1):223-224. 被引量:12
  • 6Prabhackar S Naidu. Sensor Array Signal Processing [ M ]. Florida: CRC Press,2001.

二级参考文献6

  • 1路鸣,保铮.改善MUSIC空间谱估计分辨率的后处理算法[J].电子学报,1990,18(4):57-62. 被引量:6
  • 2R. O. Schmidt: Multiple emitter location and signal parameter estimation[J]. IEEE Trans AP, 1986,34(2):276 - 280.
  • 3Kundu. D: Modified MUSIC algorithm for estimating DOA of signals[J]. Signal Processing, 1996, 48(1):85 - 90.
  • 4HayKin S, Keily J P. Some aspects of arrays singal processing[J].IEEE Proc,1992,139(1): 100-124.
  • 5Godara L C. Application of antenna arrays to mobile communication,part Ⅱ:Beam forming and direction-of-arrival consideration[J]. Proc.IEEE, 1997,85 (8): 1195-1245.
  • 6何子述,黄振兴,向敬成.修正MUSIC算法对相关信号源的DOA估计性能[J].通信学报,2000,21(10):14-17. 被引量:65

共引文献11

同被引文献24

  • 1张小飞,徐大专.小波域的自适应波束形成算法[J].航空学报,2005,26(1):98-102. 被引量:6
  • 2廖宏宇.被动声纳目标/背景建模与仿真[J].计算机仿真,2006,23(4):1-4. 被引量:20
  • 3N Wang, P Agathoklis, A Antoniou. A new DOA estimation tech- nique based on subarray Beamforming [ J ]. 1EEE Trans. Signal Processing, 2006,54(9) :3279-3290.
  • 4L Wiskott, T Sejnowski. Slow Feature Analysis: Unsupervised Learning of Invariances [ J ]. Neural Computation, 2002,14 ( 4 ) : 715 -770.
  • 5T Blaschke, P Berkes, Wiskott. What is the Relationship be- tween Slow Feature Analysis and Independent Component Analy- sis[ J]. Neural Computation, 2006,18 (10) :2495-25 08.
  • 6Schmidt.R.O. Multiple Emitter Location and Signal Parameter Estimation, IEEE Trans. on AP, 1986.3.AP- 34:276-280.
  • 7Qian C, Huang L. Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling[J]. 2014,21(2):140-144.
  • 8R Roy, T Kailath. ESPRIT-estimation of signal parameters via ro- tational invariance techni-clues [J]. Acoustics, Speech and Signal Proces-sing, IEEE Transactions on, 1989,37 (7) :984-995.
  • 9刘剑,于红旗,黄知涛,周一宇.基于二阶预处理的共轭扩展MUSIC算法[J].系统工程与电子技术,2008,30(1):57-60. 被引量:10
  • 10游鸿,黄建国,金勇,徐贵民.基于加权信号子空间投影的MUSIC改进算法[J].系统工程与电子技术,2008,30(5):792-794. 被引量:14

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部