期刊文献+

变窗口神经网络集成预测模型

Neural networks ensemble based on variable-window model
下载PDF
导出
摘要 针对时间序列问题,提出了一个变窗口神经网络集成预测模型。利用自相关分析方法挖掘时间序列本身蕴涵的变化特性,并利用这些变化特性构造差异度较大的个体神经网络。变窗口集成预测模型在应用于时间序列预测的同时,还可以有效地对异常序列进行筛选和分离。将该模型应用于移动通信话务量的预测。实验分析表明,该预测系统具有较高的预测精度,并能有效地对异常序列进行分离。 This paper propsoed a novel model, called variable-window neural network ensembles to improve the ability of generalization. First it took use of the self-correlation analysis method to calculate the self-correlation coefficients of the time series. Then used the coefficients to construct all the individual neural networks of the ensemble. The forecasting model could also be used to detect the outliers among the time series data. Applied the model to forecast the telephone traffic. The experiments demonstrate the proposed model is accurate and effective in the forecasting of telephone traffic.
作者 杨沛 谭琦
出处 《计算机应用研究》 CSCD 北大核心 2008年第8期2355-2356,2361,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60574078)
关键词 神经网络集成 时间序列 预测 异常检测 neural networks ensemble time series forecasting outlier detection
  • 相关文献

参考文献10

  • 1SHAUN N,RUEY P.Combining artificial neural networks and statistics for stock-market forecasting[C]// Proc of ACM Conference on Computer Science.New York:ACM Press,1993:257-264.
  • 2CORTEZ P,RIO M,ROCHA M,et al.Internet traffic forecasting using neural networks[C]// Proc of International Joint Conference on Neural Networks.2006:2635-2642.
  • 3LEE R S T.iJADE stock advisor:an intelligent agent based stock prediction system using hybrid RBF recurrent network[J].IEEE Trans on Systems,Man,and Cybernetics,2004,34(3):421-428.
  • 4IBA H,SASAKI T.Using genetic programming to predict financial data[C]// Proc of IEEE Congress on Evolutionary Computation.Piscataway:IEEE Press,1999:244-251.
  • 5McGONIGAL D,IONESCU D.An outline for a Kalman filter and recursive parameter estimation approach applied to stock market forecasting[C]// Proc of IEEE Conference on Electrical and Computer Engineering.1995:1148-1151.
  • 6HANSEN L K,SALAMEN P.Neural network ensembles[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1990,12(10):993-1001.
  • 7KROGH A,VEDELSBY J.Neural network ensembles,cross validation,and active learning[C]// TESAURO G,TOURETZKY D S,LEEN T K.Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,1995:231-238.
  • 8BREIMAN L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.
  • 9SCHAPIRE R.The strength of weak learnability[J].Machine Learning,1990,5(2):197-227.
  • 10KUNCHEVA L I,WHITAKER C J.Measures of diversity in classifier ensemble[J].Machine Learning,2003,51(2):181-207.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部