期刊文献+

基于支持向量机的流量分类方法 被引量:6

Traffic classification based on support vector machine
下载PDF
导出
摘要 针对现有流量分类方法存在的准确率低、应用范围受限、计算复杂度高等问题,提出使用支持向量机方法来解决流量分类问题。使用公开的人工标注数据集作为训练集和测试集,通过有监督学习构建支持向量机流量分类器。此外,通过实验进一步分析了训练集大小、核函数、惩罚因子等因素对支持向量机分类性能的影响。实验结果表明支持向量机分类器可以达到98%以上的流分类准确率。 In order to solve the problems in current work, such as low accuracy, limited application region or high computation complexity, support vector machine (SVM) was applied to categorize traffic by application. The work capitalized on public hand-classified network dataset and used it to train and tested the supervised SVM traffic classifier. The improved accuracy of refined variants of this classifier was further illustrated, and the variants included the size of training dataset, kernel functions and penalty factors. The results indicate that it can achieve over 98% accuracy on per-flow classification with the SVM classifier.
出处 《计算机应用研究》 CSCD 北大核心 2008年第8期2488-2490,2498,共4页 Application Research of Computers
基金 国家“973”重点基础研究发展规划基金资助项目(2007CB307106)
关键词 流量分类 支持向量机 流量识别 traffic classification support vector machine(SVM) traffic identification
  • 相关文献

参考文献11

  • 1MOORE D,KEYS K,KOGA R,et al.The CoralReef software suite as a tool for system and network administrators[C]//Proc of the 15th USENIX Conference on System Administration.California:USENIX Association,2001:133-144.
  • 2LOGG C,COTTRELL L.Characterization of the traffic between SLAC and the Internet[EB/OL].(2003-07-15).http://www.slac.stanford.edu/comp/net/slac-netflow/html/SLAC-netflow.html.
  • 3MOORE A W,PAPAGIANNAKI D.Toward the accurate identification of network applications[C]//Proc of the 6th Passive and Active Measurement Workshop.Berlin:Springer,2005:41-54.
  • 4KARAGIANNIS T,PAPAGIANNAKI K,FALOUTSOS M.BLINC:multilevel traffic classification in the dark[C]//Proc of ACM SIGCOMM Computer Communication.New York:ACM Press,2005:229-240.
  • 5AULD T,MOORE A,GULL S.Bayesian neural networks for Internet traffic classification[J].IEEE Trans on Neural Networks,2007,18(1):223-239.
  • 6MOORE A W,ZUEV D.Internet traffic classification using Bayesian analysis techniques[C]//Proc of ACM SIGMETRICS.New York:ACM Press,2005:50-60.
  • 7张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 8许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 9MOORE A W,HALL J,KREIBICH C,et al.Architecture of a network monitor[C]//Proc of the 4th Passive and Active Measurement Workshop.Berlin:Springer,2003:257-267.
  • 10MOORE A W,ZUEV D.Discriminators for use in flow-based classification[R].Cambridge:Intel Research,2005.

二级参考文献26

  • 1[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 2[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 3[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.
  • 4[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287.
  • 5[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 6[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 7[7]Vapnik V N. The Nature of Statistical Learning Theory [M]. 2nd edition. New York: SpringerVerlag, 1999.
  • 8[8]Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Advances in Kernel Methods - Support Vector Learning [C].Cambridge: MIT Press, 1999. 185-208.
  • 9[9]Suykens J A K, Vandewalle J. Least squares support vector machines [J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 10[10]Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithms [J]. Neural Computation,2000, 12(5) :1207-1245.

共引文献2364

同被引文献38

  • 1罗可,林睦纲,郗东妹.数据挖掘中分类算法综述[J].计算机工程,2005,31(1):3-5. 被引量:63
  • 2陈亮,龚俭,徐选.应用层协议识别算法综述[J].计算机科学,2007,34(7):73-75. 被引量:33
  • 3Andrew W Moore,Denis Zuev, Michael L Crogan.Discrimina- tors for use in flow-based classification, RR-05-13 [R]. Queen Mary University of London,2005.
  • 4Andrew W Moore, Denis Zuev. Internet traffic classification using Bayesian analysis techniques [C]. Proceedings of ACM Sigmetrics International Conference on Measurement and Mode- ling of Computers Systems,2005:50-60.
  • 5Moore A,Papagiannaki K.Toward the accurate identification of network application[C].Passive and Active Network Measure- menet,2005:41-45.
  • 6Erman J,Mahanti A,Arlitt M,et al.Semisupervised network traf- fic classification[C].Proceedings of the ACM Sigmetrics Inter- n~itional Conference on Measurement and Modeling of Compu- ters Systems,2007:369-370.
  • 7Erman J,Arlitt M,Mahanti A.Traffic classification using cluste- ring algorithms[C].Proceedings of the SIGCOMM Wrokshop on Mining Network Data,2006:281-286.
  • 8Crotti M,Dusi M, Gringoli F, et al.Traffic classification through simple statistical fingerprinting[J].ACM SIGCOMM Computer Communication Review,2007,37(1):5-16.
  • 9Auld T, Moore A,Gull S F.Bayesian neural networks for Intemet traffic classification[J].IEEE Transactions on Neural Networks, 2007,18(1):223-229.
  • 10Bemaille L,Teixeira R,Akodkenou I,et al.Traffic classification on the fly[J].ACM SIGCOMM Computer Communication Re- view,2006,36(2):23-26.

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部