期刊文献+

沥青铀矿石细菌浸出机理的实验研究 被引量:6

Experimental Studies on Bacteria Leaching Mechanism of Uranium from Uraninite
下载PDF
导出
摘要 采用氧化亚铁硫杆菌作为实验菌,针对有菌有Fe2+、有菌无铁、无菌有Fe3+、无菌有Fe2+、不控制pH值的无菌无铁和pH值控制在2.0的无菌无铁6种沥青铀矿石浸出体系,考察了浸出过程中细菌的浓度、溶液pH值、电位、亚铁离子浓度、全铁离子、铀浓度等参数的变化,得到铀矿石的浸出率分别为98.00%,80.33%,97.66%,93.00%,20.33%,72.00%.结果表明,在沥青铀矿石的细菌浸出中,细菌的作用以间接作用为主,即细菌把还原态的硫或单质硫及Fe2+氧化成Fe2(SO4)3.由于Fe2(SO4)3是一种强氧化剂,将不溶的U(IV)氧化为可溶解的U(VI),从而使沥青铀矿石中的铀得以浸出. Thiobacillusferrooxidans was used in bacteria leaching of uranium from uraninite ore leaching system with bacteria and Fe^2+, the system with bacteria and without Fe^2+, the system with Fe^2+ and without bacteria, the system with Fe^3+ and without bacteria, the system without bacteria and iron ions, and uncontrolled pH value, and the system without bacteria and iron ions, and controlled pH value of 2. The effects ofpH value, redox potential (Eh), ferrous ions, total iron and uranium concentration were examined. The leaching rates for the six uraninite ore leaching systems reached 98.00%, 80.33%, 97.66%, 93.00%, 20.33% and 72.00%, respectively. The results show that bacteria play mainly an indirect role in leaching uranium from uraninite. That is to say that bacteria oxidize sulfate in reduction state, So Fe^2+ to produce Fe2(SO4)3 and it in turn oxidizes the insoluble U(Ⅳ) to soluble U(Ⅵ) and, in this way, the uranium in uraninite ore is leached out.
出处 《过程工程学报》 EI CAS CSCD 北大核心 2008年第5期859-865,共7页 The Chinese Journal of Process Engineering
基金 湖南省自然科学基金资助项目(编号:06JJ2037)
关键词 氧化亚铁硫杆菌 沥青铀矿石 浸铀机理 浸出率 间接作用 Thiobacillus ferrooxidans uraninite ore leaching mechanism leaching rate indirect action
  • 相关文献

参考文献18

  • 1李雄,柴立元,王云燕.生物浸矿技术研究进展[J].工业安全与环保,2006,32(3):1-3. 被引量:22
  • 2J.A.布里尔利,王荣生.微生物学在冶金工艺中的作用[J].国外金属矿选矿,2001,38(11):2-4. 被引量:8
  • 3Munoz J A, Gonzalez F, Ballester A. Bioleaching of a Spanish Uranium Ore [J]. FEMS Microbiol. Rev., 1993, 11(3): 109-119.
  • 4刘汉钊,张永奎.微生物在矿物工程上应用的新进展[J].国外金属矿选矿,1999,36(12):9-12. 被引量:32
  • 5Fowler T A, Crundwell F K. Leaching of Zinc Sulfide by Thlobacillus ferrooxidans: Experiments with a Controlled Redox Potential Indicate no Direct Bacterial Mechanism [J]. Appl. Environ. Microbiol., 1998, 64(10): 3570-3575.
  • 6Fowler T A, Holmes P R, Crundwell F K. Mechanism of Pyrite Dissolution in the Presence of Thlobacillus ferrooxidans [J]. Appl. Environ. Microbiol., 1999, 65(7): 2987-2993.
  • 7蒋磊,周怀阳,彭晓彤.氧化亚铁硫杆菌对黄铁矿、黄铜矿和磁黄铁矿的生物氧化作用研究[J].科学通报,2007,52(15):1802-1813. 被引量:24
  • 8Gleisner M, Herbert Jr R B, Kockum P C F. Pyrite Oxidation by Acidithiobacillus ferrooxidans at Various Concentrations of Dissolved Oxygen [J]. Chem. Geol., 2006, 225(1/2): 16-29.
  • 9Holmes P R, Grundwell F K. The Kinetics of the Oxidation of Pyrite by Ferric Ions and Dissolved Oxygen: An Electrochemical Study [J]. Geochim. Cosmochim. Acta, 2000, 64(2): 263-274.
  • 10Shrihari J, Modak M, Kumar R. Dissolution of Particles of Pyrite Mineral by Direct Attachment of Thlobacillus ferrooxidans [J]. Hydrometallurgy, 1995, 38(2): 175-187.

二级参考文献40

共引文献104

同被引文献66

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部