期刊文献+

纳米掺杂Al2O3+13wt% TiO2等离子喷涂涂层的抗磨损性能 被引量:3

Wear resistance of nano-doping Al_2O_3+13wt% TiO_2 plasma sprayed coatings
原文传递
导出
摘要 采用纳米掺杂(5%-30%)方法制备出纳米包覆微米级粒子的AT13等离子喷涂粉末,并利用大气等离子喷涂技术制备出了含有纳米复相结构的陶瓷涂层。在MM-200型磨损试验机上进行了常温干摩擦试验,比较了纳米复相结构涂层和传统陶瓷涂层的耐磨性能,利用扫描电镜观察了磨损后的磨痕形貌。结果表明,纳米复相涂层的耐磨性能明显好于传统陶瓷涂层,且随着磨损载荷的增大,纳米复相涂层和传统涂层的磨损机制的变化是不同的,传统涂层的磨损机理主要是微裂纹和颗粒的剥落,而相同条件下纳米复相涂层则由于涂层韧性的提高,主要表现为涂层的粘着磨损与局部剥落,并对纳米掺杂等离子喷涂涂层对AT13涂层磨损机制的影响进行了探讨。 Micrometer particle ATl3 plasma spraying powder coated by nano particles was prepared by nano-doping method, also the ceramic coatings of multi-phase structure were prepared by arc plasma spraying. Room-temperature dry friction experiment was carried out on MM-200 wear test machine, wear resistance of the nano multi-phase coatings was compared with that of the traditional ceramic coating, and worn surface of the coatings was observed using SEM. The results shows that the wear resistance of nano multi-phase coating is superior than that of the conventional one, however, as the increase of wear loading their wear mechanisms are different, the wear mechanism of conventional coating is micro crack and flaking of particles, and the mechanism of nano multi-phase coating is adhesion wear, part peel off in the same conditions for the increase of its impact strength. The influence of nano doped plasma coating on wear mechanism is also discussed.
出处 《金属热处理》 CAS CSCD 北大核心 2008年第10期57-62,共6页 Heat Treatment of Metals
基金 国家自然科学基金资助项目(50372054)
关键词 等离子喷涂 AT13陶瓷涂层 磨损 纳米掺杂 plasma spray ATl3 ceramic coating wear resistance nano-doping
  • 相关文献

参考文献8

二级参考文献24

  • 1丁传贤,张叶方.等离子喷涂涂层材料[J].表面工程,1994(4):1-7. 被引量:9
  • 2俞兵,楼志飞,毕红运.Al_2O_3+TiO_2 13%涂层磨损特性的研究[J].表面工程,1997(4):29-31. 被引量:3
  • 3李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社,1996.9.
  • 4李春福 钟瑞梅.石油钻机链条销轴渗C与CN共渗热处理后残余应力分析.金属热处理,1985,(3):31-37.
  • 5[2]G E Kim, V Provenzano, E J Lavernia. Vacuum Plasma Spray Applications of nanostructure Composite Coatings[A]. Thermal Spraying Processing of Nanoscale Materials[C]. Quebec City,1999.
  • 6[3]Maher Boulos and Francois Gizhofer. Supersonic Induction Plasma Spraying of High Density Nanostructure Ceramics[A]. Thermal Spraying Processing of Nanoscale Materials[C]. Quebec City,1999.
  • 7[4]M L Lau, R Schweinfest, E J Lavernai etc. Microstructure evolution of nanocrystalline Cu-Al particles during HVOF thermal spraying[A]. Thermal Spraying Processing of Nanoscale Materials[C]. Quebec City,1999.
  • 8[5]A H Dent, S Sampath, H Herman etc. The effect of powder processing method on the physical properties of nanocomposite WC/Co thermally sprayed coatings[A]. Thermal Spraying Processing of Nanoscale Materials[C]. Quebec City,1999.
  • 9[6]T D Xiao, S Jiang, Y Wang etc. Thermal spray of nanostructured Alumina/Titania feedstock for improved properties[A]. Thermal Spraying Processing of Nanoscale Materials[C]. Quebec City,1999.
  • 10[7]D G Atteridge, R Davis, M Scholl etc. High-energy plasma spray coating using micrometer- and nanometer-scale Tungsten Carbide-Cobalt powder[A]. Thermal Spraying Processing of Nanoscale Materials[C]. Quebec City,1999.

共引文献55

同被引文献37

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部