期刊文献+

卡维地洛与一些常用化学药的体外葡醛酸化代谢性相互作用 被引量:2

In Vitro Metabolic Interaction between Carvedilol and Some Commonly Used Drugs
下载PDF
导出
摘要 目的研究卡维地洛与一些常用化学药的葡醛酸化代谢性相互作用,为临床合理用药提供科学依据。方法选择42种临床上可能合用的药物与卡维地洛在鼠肝微粒体中共孵育。以HPLC测定孵育液中卡维地洛葡醛酸结合物的浓度,计算共孵育药物对卡维地洛2个葡醛酸结合物的IC50或Ki值。结果非洛地平,拉西地平,尼群地平,辛伐他汀和洛伐他汀对卡维地洛葡醛酸化代谢均有较强的体外抑制作用,Ki值在0.65~63.48μmol·L^-1之间。这5种药物对卡维地洛葡醛酸结合物M1的Ki值均低于对M2的Ki值,对M1的抑制作用强于对M2的抑制作用。其中拉西地平对M1和M2的抑制作用最强,Ki值分别约0.65和6.44μmol·L^-1。结论这5种药物对卡维地洛葡醛酸化代谢有较强的体外抑制作用,在联合用药时应引起注意。 OBJECTIVE To study the metabolic drug interactions of carvedilol with some commonly used chemical drugs for providing some usefill information for clinic. METHODS Carvedilol was co-incubated with 42 commonly used drugs in rat liver microsomes and the concentrations of carvedilol glucuronides were determined by HPLC. The IC50 or Ki were calculated. RESULTS Felodipine, lacidipine, nitrendipine, simvastatin and lovastatin showed fairly strong inhibition on the glucuronidation of carvedilol in vitro, with Ki value between 0. 65 - 63. 48 μmol·L^-1. The Ki values of the five drugs for carvedilol glucuronide M1 were lower than those for carvedilol glucuronide M2, as evidence of stronger inhibition for M1. Among these five drugs, lacidipine had the strongest inhibition, with the Ki value about 0. 65 μmol·L^-1 and 6. 44 μmol·L^-1 for M1 and M2, respectively. CONCLUSION There were strong interactions between the five drugs and carvedilol in vitro glucuronidation, the special attention should be paid when being co-administrated.
作者 尤琳雅 曾苏
出处 《中国药学杂志》 CAS CSCD 北大核心 2008年第20期1550-1554,共5页 Chinese Pharmaceutical Journal
基金 国家杰出青年基金资助项目(30225047)
关键词 卡维地洛 高效液相色谱法 肝微粒体 葡醛酸化 相互作用 carvedilol high-performance liquid chromatography liver microsome glucuronidation interaction
  • 相关文献

参考文献26

  • 1ZHO S, CHIANG D, CHIN R, et al. High-throughput screening of potential inhibitors for the metabolism of the investigational anticancer drug 5, 6-dimethylxanthenone- 4-acetic acid [ J ]. J Chromatogr B Analyt Techrtol Biomed Life Sci,2002,767 ( 1 ):19- 26.
  • 2KIANG T K, ENSOM M H, CHANG T K. UDP-glucuronosy ltransferases and clinical drug-drug interactions [ J ]. Pharmacol Ther, 20(15,106(1) :97-132.
  • 3BARIS N, KALKAN S, GUNERI S, et al. Influence of carvedilol on serum digoxin levels in heart failure: is there any gender difference[J]. Enr J Clin Pharmacol,2006,62 ( 7 ) :535-538.
  • 4AIBA T, ISHIDA K, YOSHINAGA M, et al. Pharmacokinetic characterization of transcellular transport and drug interaction of digoxin in Caco-2 cell monolayers[ J ]. Biol Pharm Bull,2005,28 (1) :114-119.
  • 5RATNAPALAN S, GRIFFITHS K, COSTEI A M, et al. Digoxincarvedilol interactions in children [ J ]. J Pediatr, 2003,142 ( 5 ) : 572-574.
  • 6FUKUMOTO K, KOBAYASHI T, KOMAMURA K, et al. Stereoselective effect of amiodarone on the pharmacokinetics of racemic carvedilol[ J ]. Drug Metab Pharmacokinet ,2005,20(6 ) :423-427.
  • 7BADER F M, HAGAN M E, CROMPTON J A, et al. The effect of beta-blocker use on eyclosporine level in cardiac transplant recipients[J]. J Heart Lung Transplant, 2005,24 (12) :2144- 2147.
  • 8KAIJSER M, JOHNSSON C, ZEZINA L, et al. Elevation of cyclos porin A blood levels during carvedilol treatment in renal transplant patients[ J ]. Clin Transplant,1997,11 (6) :577-581.
  • 9HOKAMA N, HOBARA N, SAKAI M, et al. Influence of nicardipine and nifedipine on plasma carvedilol disposition after oral administration in rats [ J ]. J Pharm Pharmacol, 2002,54 ( 6 ) : 821-825.
  • 10GRAFF D W, WILLIAMSON K M, PIEPER J A, et al. Effect of fluoxetine on carvedilol pharmacokinetics, CYP2D6 activity, and autonomic balance in heart failure patients [ J ]. J Clin Pharmaco/,2001,41 ( 1 ) :97-106.

二级参考文献9

共引文献15

同被引文献2015

  • 1Green M D, Tephly T R. 1996 ASPET-N-glucuronidation of xenobiotics symposium, Glucuronidation of amine substrates by purified and expressed UDP-clucuronosyltransferases proteins [J]. Drug Metabolism and Disposition, 1998, 26(9): 860-867.
  • 2Huskey S W, Miller R R, Chiu S L. N-glucuronidation reaction. Ⅰ. Tetrazole N-glucuronidation of selected angiotensin Ⅱ receptor antogonists in heptatic micmsomes from rats, dogs, monkeys, and humans [J]. Drug Metabolism and Disposition, 1993, 21(5): 792-799.
  • 3Uesawa Y, Stains A G, Lockley D, et oi. Identification of the human liver UDP- glucuronosyltransferase involved in the metabolism of p- ethoxyphenylurea(dulcin)[J]. Arch Toxicol, 2007, 81: 163-168.
  • 4Vashishtha S C, Haws E M, Mccann D J, et ol. Quaternary ammoniumlinked glucuronidation of 1-substituted imidazoles by liver microsomes: interspecies differences and structure-metabolism relationships[J]. Drug Metabolism and Disposition, 2002, 30: 1070-1076.
  • 5Peng H W, Cheng F C, Huang Y T, et al. Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by HPLC [J]. Journal of chromatography B, 1998, 714: 369-374.
  • 6Tricker A R. Nicotine metabolism, human drug metabolism polymorphisms and smoking behaviour[J]. Toxicology, 2003, 183: 151-173.
  • 7Ghoshen O, Haws E M. Microsomal N-glucuronidation of nicotine and cotinide: Human heptic interindividual, human intertissue, and interspecies hepatic variation [J]. Drug Metabolism and Disposition, 2002, 30: 1478-1483.
  • 8Wiener D, Doerge D R, Fang J, et al. Characterization of N- glucuronidation of the lung carcinogen 4-(methylnitrosamine)-1-(3- pytidyl)-1-butanol (NNAL) in human liver: importance of UDP- glucuronosyl tranferases 1A4 [J]. Drug Metabolism and Disposition, 2004. 32: 72-79.
  • 9Huskey S W, Doss G A, Miller R R, et al. N-glucuronidation reactions: Ⅱ. relative N-glucuronidation reactivity of methylbiphenyl tetrazole, methylbiphenyl trizole, and methylbiphenyl imidazole in rat, monkey, human hepatic microsomes [J]. Drug metabolism and disposition, 1994, 22(4): 651-658.
  • 10Kaku T, Ogura K, Nishiyama T, et al. Quaternary ammonium-linked glucuronidation of tamoxifen by human liver microsomes and UDP- glucuronosyltranferases 1A4 [J]. Biochemical Pharmacology, 2004, 67 (11): 2093-2102.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部