期刊文献+

基于视频的智能交通信息检测算法的研究 被引量:2

Study of an Algorithm in Intelligent Traffic-information Detection Based on Video Technique
下载PDF
导出
摘要 该文通过自适应混合高斯模型在一系列连续视频图像中提取出背景并进行更新的基础上,利用背景差法对视频图像中的运动车辆进行检测并进行占道比计算,以实现对高速公路上过往车辆的自动监控功能。实验结果表明,该系统能够快速地适应环境的变化,达到实时的要求,具有较好的效果。 In the paper, an adaptive mixture Gaussian model is used as the background model, the background is extracted from the video images. In order to automatically monitor the passing vehicles on the highway', a method of background subtraction is applied to detect the moving vehicles and finally the ratio of vehicle - occupied was computed. Experimental results show that the system can fast adapt the environmental changes, meet the real - time re- quirements and have a good effect.
出处 《杭州电子科技大学学报(自然科学版)》 2008年第5期155-158,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省科技厅资助项目(C24002) 杭州电子科技大学科研项目(zx070430)
关键词 混合高斯模型 视频图像 背景差法 mixture Gaussian model video images background subtraction
  • 相关文献

参考文献6

  • 1方帅,薛方正,徐心和.基于背景建模的动态目标检测算法的研究与仿真[J].系统仿真学报,2005,17(1):159-161. 被引量:40
  • 2汪亚明,黄文清,周海英.动态图像序列中的运动目标检测[J].计算机测量与控制,2003,11(8):564-565. 被引量:19
  • 3Meier T, Ngun K N. Video Segmentation for Content - Based Coding[J]. IEEE Trans on Cimits and Systems for Video Technology, 1999,9(8) : 1190 - 1203.
  • 4Gupt S, Masound O, Martin RFK, etal. Detection and classification for vehicles[ J]. IEEE Transaction on Intelligent Transportation Systems, 2002,3 ( 1 ) : 35 - 47.
  • 5Stauffer C, Grimson W E L. Adaptive background mixture models for real - time tracking[C]. Cambridge: In Proceeding IEEE Conference on Computer Vision and Pattern Recognition, 1999:245- 251.
  • 6余胜生,肖德贵,周敬利,蒋纲.自适应背景抽取算法[J].小型微型计算机系统,2003,24(7):1331-1334. 被引量:13

二级参考文献28

  • 1刘彦宏,杜威,李华.足球视频序列中球员的分割与跟踪算法[J].系统仿真学报,2001,13(S2):90-93. 被引量:7
  • 2Ude A and Riley M. Prediction of body configurations and appearance for model-based estimation of articulated human motions[J]. IEEE SMC' 99 Conference Proceedings, 1999,2, 687-691.
  • 3Ricquebourg Y and Bouthemy P. Real-time tracking of moving persons by exploiting spatio-temporal image slices [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000 22(8): 797 -808.
  • 4Tsap L V, Goldof D B and Sarkar S. Nonrigid motion analysis based on dynamic refinement of finite element models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000 22(5): 526-543.
  • 5Haritaoglu I, Harwood D and Davis L. W4: Who, When,Where, What: A real rime system for detecting and tracking people [C]. Third International Conference on Automatic Face and Gesture, Nara, April 1998.
  • 6Wren C, Azarbayejani A and Darrell T etc. Pfinderz Real-time tracking of the human body [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785.
  • 7Ridder C, Munkelt O and Kirchner H. Adaptive background estimation and foreground detection using Kalman-filtering[C]. Proc Int'l Conf. Recent Advances in Mechatronics, ICRAM' 95,1995, 193-199.
  • 8Fujiyoshi H and Lipton A J. Real-time human motion analysis by image skeletonization[C]. Proc of the Workshop on Application of Computer Vision, October 1998.
  • 9Grimson W E L, Stauffer C, Romano R and Lee L. Using adaptive tracking to classify and monitor activities in a site[C]. Proc Computer Vision and Pattern Recognition, CVPR' 98, June1998, 22-29.
  • 10Stauffer C and Grimson W E L. Adaptive background mixture models for real-time tracking [C]. Proc Computer Vision and Pattern Recognition, CVPR' 99, Fort Colins, CO, June 1999.

共引文献68

同被引文献7

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部