摘要
一个k+1色有向图D是本原的,如果存在非负整数h0,h1,h2,…,hk,且h0+h1+h2+…+hk>0,使得D的每对顶点(i,j)都存在从i到j的(h0,h1,h2,…,hk)-途径,称h0+h1+h2+…+hk的最小值为D的本原指数.本文研究了一类k+1色有向图.结合数论中的Znám问题,应用组合矩阵论和图论的方法,给出了单弧灯图的本原指数的算法.
A (k + 1 )-colored digraph D is primitive if there exist nonnegative integers h0,h1,…,hk with h0+h1+…+hk〉0, such that for each pair (i,j) of vertices there exists an (h0,h1,…,h,)-walk in D from i to j. The exponent of the primitive (kq-1)-colored digraph Dis the minimum value of h0+h1+…+h, taken over all such h0,hl,…,hk. A class of (k+1)-colored digraphs are discussed. Combining with the Znam problem in number theory, with the application of combinatorial matrix theory and graph theory, the algorithms about the primitive exponents of one-arc light digraphs are given.
出处
《中北大学学报(自然科学版)》
CAS
2008年第5期385-394,共10页
Journal of North University of China(Natural Science Edition)
基金
山西省自然科学基金资助项目(2007011017)