期刊文献+

三角代数上的可乘导子 被引量:1

Multiplicative Derivations of Triangular Algerbas
下载PDF
导出
摘要 设T是环R上的三角代数,研究三角代数T上的可乘导子的可加性。利用矩阵分块理论证明了满足一定条件的三角代数上的每一个可乘导子是可加的,从而得到套代数中许多标准子代数上的可乘导子是可加的。 Let T be a triangular algebra on a ring R. The multiplicative derivation of triangular algebra is considered. Using the theory of partisioning,the additivity of multiplicative derivation of T satisfying some conditions is proved. Consequently,every multiplicative derivation of some standard subalgebras of nest algebras is additive.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2008年第3期26-28,共3页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10675086) 山东省自然科学基金资助项目(Y2006A03)
关键词 可乘导子 三角代数 可加性 multiplieative derivations triangular algebras additivity
  • 相关文献

参考文献9

  • 1MARTINDALE W S. When are multiplieative mappings additive? [J]. Proe Amer Math Soc, 1969,21(3):695-698.
  • 2DAIF M N. When is a multiplicative derivation additive? [J]. Internat J Math and Math Sci,1991,14(3) :615-618.
  • 3杜炜,张建华.套代数上的可乘导子[J].纺织高校基础科学学报,2007,20(2):153-155. 被引量:7
  • 4CHEUNG Wai-shun. Mappings on triangular algebras[D]. Victoria:Department of Mathematics and Statistics,University of Victoria, 2000.
  • 5CHEUNG Wai-shun. Commuting maps of triangular algebras[J]. J London Math Soc,2001,63(1) :117-127.
  • 6CHEUNG Wai-shun. Lie derivations of triangular algebras [J]. Linear and Mutilinear Algebra, 2003,51(3):299-310.
  • 7JI Pei-sheng. Jordan maps on triangular algebras [J ]. Linear Algebra and its Applications, 2007,426 (1) : 190-198.
  • 8纪培胜,綦伟青.原子CSL代数中的Lie理想[J].广西师范大学学报(自然科学版),2007,25(3):36-39. 被引量:1
  • 9ZHANG Jian-hua,YU Wei-yan. Jordan derivations of triangular algebras [J]. Linear Algebra and its Applications, 2006,419 (1), 251-255.

二级参考文献11

  • 1纪培胜,王琳.GICAR代数中的闭Lie理想[J].数学学报(中文版),2004,47(5):867-872. 被引量:2
  • 2DAIF M N. When is a multiplieative derivation additive? [J]. Internat J Math and Math Sci, 1991,14: 615- 618.
  • 3SMERL P. The functional equation of multiplicative derivation is superstable on standard operator algebras[J]. Inter Equat Operator Theory, 1994,18 :118-122.
  • 4DIVISION K R. Nest Algebras[M]. New York; Longman Scientific and Technical, 1988.
  • 5LU Fang-yah. Multiplieative rnapplings of operator algebras[J]. Linear Algebra Appl,2002,347:283-291.
  • 6HAN De-guang. Additive derivations of nest algebras[J]. Proc Amer Math Soc, 1993,119:1 165-1 169.
  • 7HERSTEIN I N.On the Lie and Jordan rings of a simple associative ring[J].Amer J Math,1955,77:279-285.
  • 8HOPENWASSER A,PAULSEN V.Lie ideals in operator algebras[J].J Operator Theory,2004,52:325-340.
  • 9JI Pei-sheng,WANG Lin.Lie ideal in AF algebra[J].J Math Research and exposition,2005,25(4):589-592.
  • 10DAVIDSON K R.Nest algebras[M]//Pitman Research Notes in Mathematics Series:vol 191.London:Longman Scientific and Technical Pub Co,1988.

共引文献6

同被引文献1

  • 1Helmut Goldmann,Peter ?emrl. Multiplicative derivations onC(X)[J] 1996,Monatshefte für Mathematik(3):189~197

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部