期刊文献+

可变惩罚系数比例的分类SVM模型 被引量:2

A Classification SVM Model with Variable Punishment Coefficient Ratio
下载PDF
导出
摘要 为了解决常规分类SVM模型在样本比例相差较大情况下的不适用问题,提出了可变惩罚系数比例的分类SVM模型。在所提出的模型中,惩罚系数的比例以其对应样本数的反比来确定。最后,在90¨10样本比例下,分别用常规SVM模型和所提出的SVM模型得到相应的分割线,并将其进行比较,实验结果验证了本模型的有效性。虽然本研究所采用的核函数是最简单的向量内积,但所提出的模型对于所有的核函数都是适用的。 In order to solve the problem that normal classifier SVM model was unsuitable with the circumstances that samples ratio was very large,a classification SVM model with variable punishment coefficient ratio was proposed. In the new model,the ratio of punishment coefficient was inversely proportional to the ratio of corresponding sample sizes. At last ,experiments were conducted. Segmentation lines were respectively obtained through these models, and the results verified the new one. In this research, the kernel function is in the simplest form of inner product ,but the new model is applicable for all the kernel functions.
作者 彭敏晶
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2008年第3期118-121,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(70471074) 中国博士后科学基金资助项目(2005038042) 广东省科技计划资助项目(2006B12701002)
关键词 支持向量机 样本比例 惩罚系数 核函数 分割线 support vector machine ratio of sample sizes punishment coefficient kernel function segmentation line
  • 相关文献

参考文献8

二级参考文献49

共引文献2472

同被引文献17

  • 1BREDEL M,POLLACK L F.The p21-ras signal transduction pathway and growth regulation in human high-grade gliomas[J].Brain Research Reviews,1999(23):232-249.
  • 2EZAWA K J,SNGH M,NORTON S W.Learning goal oriented bayesian networks for telecommunications management[C]//Proceedings of the 13th International Conference on Machine Learning.San Fransisco:Morgan Kaufmann,1996:139-147.
  • 3LI Guo-zheng,MENG Hao-hua,LU Weng-cong,et al,Asymmetric bagging and feature selection for activities prediction of drug molecules[J].BMC Bioinformatics,2008,9(S6):108-114.
  • 4LI Guo-zheng,YANG J.Feature selection for ensemble learning and its application[C]//Machine Learning in Bioinformatics.New York:John Wiley & Sons,2008:135-155.
  • 5LIU Xu-ying,WU Jian-xin,ZHOU Zhi-hua.Exploratory under-sampling for class-imbalance learning[C]//Proceedings of International Conference on Data Mining.Hong Kong:IEEE Press,2006:965-969.
  • 6PENG Han-chuan,LONG Fu-hui,DING C.Feature selection based on mutual information:criteria of max dependency,max-relevance,and min-redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (8):1226-1238.
  • 7BLAKE C,KEOGH E,MERZ C J.UCI repository of machine learning databases[DB/OL].Irvine,California:Department of Information and Computer Science,University of California.1998.[2009-03-30].http://www,ics.uci.edu/mlearn/MLRepository,html.
  • 8HAND D J.Construction and assessment of classification rules[M].Chichester:John Wiley and Sons,1997.
  • 9LI Guo-zheng,YANG Jie,YE Chen-zhou,et al.Degree prediction of malignancy in brain glioma using support vector machines,computers in biology and medicine[J].Elsevier,2006,36 (3):313-325.
  • 10JIE Cheng,CHRISTOS H, HISASHI H, et al. KDD cup 2001 [R]. [S. l. ]: ACM SIGKDD Explorations Newsletter, 2002,3 (2) : 47-64.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部