期刊文献+

基于证据理论的铁路电力线故障定位方法 被引量:3

Study on Fault Locating Method for Railway Power Lines with Evidence Theory
下载PDF
导出
摘要 多分段多分支结构的铁路电力线单相接地故障造成的供电中断,严重影响到铁路行车安全。为了确保故障的快速排除,本文依据线路的结构特点提出故障处理的区间模型。首先,基于铁路现有的区间结构,采用区间分析法构造区间定位的集中参数区间算法、故障网络分解区间算法及分布参数区间算法。然后,根据相离度定义提出相离度偏差矩阵的构造形式,并以此为基础推导出基本可信度分配函数的表达式。再以D-S证据理论的合成规则对3种区间算法的定位结果进行融合,实现了故障分段区间的可靠识别。最后,依据实际线路模型进行的PSCAD仿真分析,验证了本文方法在处理铁路电力线单相接地故障上的可行性。 Railway power lines are of a multi-segment and multi-branch structure. Electrical power interruptions caused by single-phase-to-ground faults seriously affect railway traffic safety. In order to remove each faults quickly, the interval model is established according to the power line structure characteristics. Firstly, accord- ing to the interval structure of railways, interval analysis is applied to deduce the interval locating algorithms such as the lumped parameter interval algorithm, fault network decomposing interval algorithm and distributed parameter interval algorithm. Then, on the basis of the definition of the deviation degree, the construction form of the difference matrix of the deviation degree is presented. The expression of the basic probability as- signment function is deduced in terms of the difference matrix of the deviation degree. The locating results of the three interval algorithms are combined by the combination rule of the D-S evidence theory, which ensures the reliability of segmented interval recognition of faults. Lastly, PSCAD simulation analysis based on the actual transmission line model is done. The simulation has verified effectively that the proposed method is feasible to handle single-phase-to-ground faults of railway power lines.
出处 《铁道学报》 EI CAS CSCD 北大核心 2008年第5期31-35,共5页 Journal of the China Railway Society
基金 国家自然科学基金项目(50677003)
关键词 铁路电力线 故障定位 区间算法 D-S证据理论 railway power line fault locating interval algorithm D-S evidence theory
  • 相关文献

参考文献7

  • 1R E Moore. Methods and Applications of Interval Analysis [M]. Philadelphia: SIAM Publications, 1979.
  • 2Luc Jaulin, Michel Kieffer, Olivier Dirit. Applied Interval Analysis[M]. London.. Springer Verlag, 2001.
  • 3T Takagi, Y Yamakoshi, M Yamaura R Kondow. Development of a New Type Fault Locator Using the One-Terminal Voltage and Current Data[J]. IEEE Transactions of Power Apparatus and Systems, 1982, 101(8) :2892-2897.
  • 4Girgis A A, Hart D G, Peterson W L. A New Fault Location Technique for Two and Three-terminal Lines [J]. IEEE Trans on Power Systems, 1992,7 (1): 98-107.
  • 5Shafer G. A Mathematical Theory of Evidence[M]. Princeton, New Jersey: Princeton University Press, 1976.
  • 6Jousselme A L, Grenier D, Bosse E. A New Distance Between Two Bodies of Evidence[J]. Information Fusion, 2001,2(1) :91-101.
  • 7刘华文.基于距离测度的模糊数排序[J].山东大学学报(理学版),2004,39(2):30-36. 被引量:44

二级参考文献12

  • 1R Jain.Decision making in the presence of fuzzy variables[J].IEEE Trans Systems Man Cybernet,1976,SMC-6: 698~703.
  • 2R Jain.A procedure for multiple-aspect decision making using fuzzy set [J].Internat J Systems Sci,1997,8: 1~7.
  • 3R R Yager.On choosing between fuzzy subsets[J].Kybernetes,1980,9: 151~154.
  • 4R R Yager.A procedure for ordering fuzzy sets of the unit interval[J].Inform Sci,1981,24: 143~161.
  • 5J M Adamo.Fuzzy decision trees[J].Fuzzy Sets and Systems,1980,4: 207~219.
  • 6W Chang.Ranking of fuzzy utilities with triangular membership functions[A].Proceedings of International Conference on Policy Analysis and Systems[C],1981.263~272.
  • 7L Campos,A Munoz.A subjective approach for ranking fuzzy numbers[J].Fuzzy sets and Systems,1989,29: 145~153.
  • 8K Kim,K S Park.Ranking fuzzy numbers with index of optimism[J].Fuzzy Sets and Systems,1990,35: 143~150.
  • 9T Liou,J Wang.Ranking fuzzy numbers with integral value[J].Fuzzy Sets and Systems,1992,50: 247~255.
  • 10F Choobineh,H Li.An index for ordering fuzzy numbers[J].Fuzzy Sets and Systems,1993,54: 287~294.

共引文献43

同被引文献31

引证文献3

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部