期刊文献+

一种基于Radon变换的物体几何变换不变矩分析方法 被引量:1

An Approach to Shape Recognition Based on Radon Transforms
下载PDF
导出
摘要 几何形状的识别在计算机视觉中具有重要意义,不变矩特征由于其在图像平移、伸缩、旋转时均保持不变,而且具有全局特性,是几何形状识别的主要方法。在已有的不变矩分析方法基础上,本文提出一种基于Ra-don变换的不变矩提取算法,用于对物体的几何变换不变性分析。该算法首先对图像进行坐标变换与归一化处理以实现平移与尺度变换不变,然后利用Radon变换将经过坐标变换与归一化处理后的目标图像转换到Radon投影空间,组成投影矩阵,再从投影矩阵中提取不变矩A(r)、E(r)进行目标图像的识别与分类。理论分析与实验结果表明,与现有的不变矩分析方法相比,该算法对噪声的鲁棒性强、时间复杂度低,仅用有限的几个矩即可以达到很好的分类效果。 Shape recognition is a very important issue in computer vision and digital image processing. Invariant moment has extensive applications in the field of Shape recognition due to its ability to represent global features and characteristics independent of translation, scale and rotation. This paper has addressed the issue of selecting invariant features for shape recognition in translation, scaling and rotation. Scaling and translation of an image were firstly normalized by coordinate transform and then the Radon transform was applied to the results to obtain a projection matrix. Finally, the set of invariant moments A(r) ,E(r) was derived from the matrix. Theoretical and experimental results show that the superiority of this approach includes low computational com- plexity and high robustness to additive noise in comparison with some recent methods. The results also show that the proposed approach can achieve better classification performance by a few descriptors.
出处 《铁道学报》 EI CAS CSCD 北大核心 2008年第5期135-139,共5页 Journal of the China Railway Society
基金 宁夏大学自然科学基金项目(ZR200704)
关键词 RADON变换 模式识别 不变矩 radon transforms pattern recognition moment invariants
  • 相关文献

参考文献14

  • 1E Persoon, K S Fu. Shape discrimination using Fourier descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8(3) : 388-397.
  • 2K S Fu. Syntactic Pattern Recognition and Application [M]. NJ: Prentice Hall,1982.
  • 3Hu M K. Visual pattern recognition by moment invariants [J]. IEEE Transactions on Information Theory, 1962, 8 (1) : 179-187.
  • 4C H Teh, R T Chin. On image analysis by the methods of moments [J]. IEEE Transactions on Pattern Analytical Machine Intelligence, 1988, 10(4): 496-512.
  • 5J Flusser. On the independence of rotation moment invariants [J]. Pattern Recognition, 2000,33(9) :1405-1410.
  • 6J Flusser. On the inverse problem of rotation moment in variants [J]. Pattern Recognition, 2002, 35 (12): 3015 -3017.
  • 7M R. Teague. mage analysis via the general theory of moments [J]. Optical Society of America, 1980,70 : 920-930.
  • 8Y Li. eforming the theory of invariant moments for pattern recognition [J]. Pattern Recognition, 1992, 25(7): 723- 730.
  • 9C Kan, M D Srinath. Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments [J]. Pattern Recognition, 2002, 35(1): 143-154.
  • 10S X Liao, M Pawlak. On the accuracy of Zernike mo ments for image analysis [J]. IEEE Transactions on Pat tern Analysis and Machine Intelligence, 1998,20(12): 1358-1364.

同被引文献17

  • 1刘进,张天序.图像不变矩的推广[J].计算机学报,2004,27(5):668-674. 被引量:47
  • 2刘敬伟,王作英,肖熙.基于自回归模型的加性噪声环境稳健语音识别[J].清华大学学报(自然科学版),2006,46(1):50-53. 被引量:2
  • 3Jan Lukas, Jessica Fridrich. Estimation of Primary Quantization Matrix in Double Compressed JPEG Images. IEEE Transactions on Signal Processing, 2003, 53 (2), 120- 137.
  • 4Jessica Fridrich, David Soukal, Jan Lukas. Detection of Copy-Move Forgery in Digital Image. Deparment of Computer Science SUNY Binghamton, Binghamton, NY, 2005.
  • 5Popescu A C, Farid H. Exposing digital forgeries by detecting traces of re-sampling. IEEE Trans on Signal Processing, 2005, 53(2) , 758-767.
  • 6Sevinc Bayram, Husrev Taha Sencar, Nasir Memon. An Efficient and Robust Method For Detecting Copy-Move Forgery. IEEE ICASSP, 2009, 1053-1056.
  • 7Yanni M K. The Influence of Thresholding and Spatial Resolution Variations on the Performance of the Complex Moment Descriptor Feature Extraction. PhD Thesis, The University of Kent, Canterbury City, UK, 1995.
  • 8Chao Kan, Mandyam D Srinath. Invariant character recognition with Zernike and orthogonal Fourier-Mellin moment. Pattern Recognition, 2002, 35 ( 1 ), 143-154.
  • 9Mukundan R, Ong S H, Lee P A. Image analysis by Tchebichef moments. IEEE Transactions on Image Processing, 2001. 10(9). 1357-1364.
  • 10Teh C H, Chin R T. On image analysis by the methods of moments. IEEE Transactions on Pattern Analytical Machine Intelligence, 1988, 10(4), 496-512.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部