期刊文献+

带有无界赔付函数的非零和随机对策折扣模型

Nonzero-Sum Stochastic Games with Unbounded Discounted Payoff
下载PDF
导出
摘要 讨论了赔付函数可能既无上界又无下界的离散时间可数状态非零和随机对策的折扣模型。在零和随机对策中常用的"漂移"和"连续-紧"性条件下,用Fan's不动点定理证明了Nash平衡点的存在性。 Discrete time two-person nonzero-sum stochastic games with the discounted payoff criterion and a countable state space is studied, here the payoff functions might have neither upper nor lower bounds. The existence of Nash equilibria is proved in randomized stationary strategies by using the Fan's fixed-point theorem under the "drift" and the standard "continuous-compact" conditions, which are usually used in zero-sum stochastic games.
作者 杨洁 郭先平
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期23-27,36,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(60574002)
关键词 非零和随机对策 期望折扣赔付准则 NASH平衡点 可数状态空间 nonzero-sum stochastic game expected discounted payoff cretion Nash equlibria countable state space
  • 相关文献

参考文献16

  • 1ALTMAN E, HORDIJK A, SPIEKSMA F M. Contraction conditions for average and α-discount optimality in countable state Markov games with unbounded rewards [ J ]. Math Oper Res, 1997, 22:588-618.
  • 2FINK A M. Equilibrium in a stochastic N-person game [J]. J Sci Hiroshima Univ:Ser A -I Math, 1964, 28:89 -93.
  • 3FEDERGRUEN A. On N-person stochastic games with denumerable state space [ J]. Adv Appl Prob, 1978, 10(2) : 452 -471.
  • 4HIMMELBERG C J, PARTHASARATHY T, RAGHAVAN TES, et al. Existence of p-equilibrium and optimal stationary strategies in stochastic games [ J ]. Proe Amer Math Soe, 1976, 60:245 -251.
  • 5NOWAK A S. On a new class of nonzerosum discounted stochastic games having stationary Nash equilibrium points [J]. Int J Game Theory, 2003, 32:121 - 132.
  • 6PARTHASARATHY T. Discounted, positive, and noncooperative stochastic games [ J ]. Intemat J Game Theory, 1973, 2(1): 25-37.
  • 7PARTHASARATHY T, STERN M. Markov games-a survey [ C ]. Differential Games and Control Theory, Proc 2^nd Conf Univ Rhode Island, Kingston RI 1976.
  • 8PARTHASARATHY T. Existence of equilibrium stationary strategies in discounted stochastic games [ J ]. Shankhya: Set A, 1982, 44(1) : 114 - 127.
  • 9PARTHASARATHY T, SINHA S. Existence of stationary equilibrium strategies in non-zerosum discounted stochastic games with uncountable state space and state-independent transitions [ J]. Internat J Game Theory, 1989, 18(2) : 189 - 194.
  • 10ROGERS P D. Non-zerosum stochastic games [ D ]. Berkeley : University of California, 1969.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部