期刊文献+

基于语音存在概率和听觉掩蔽特性的语音增强算法 被引量:2

Speech enhancement based on speech-presence probability and auditory masking property
下载PDF
导出
摘要 低信噪比下,谱减语音增强法中一直存在的去噪度、残留的音乐噪声和语音畸变度三者间均衡这一关键问题显得尤为突出。为降低噪声对语音通信的干扰,提出了一种适于低信噪比下的语音增强算法。在传统的谱减法基础上,根据噪声的听觉掩蔽阈值自适应调整减参数,利用语音存在概率,对语音、噪声信号估计,避免低信噪比下端点检测(VAD)的不准确,有更强的鲁棒性。对算法进行了客观和主观测试,结果表明:相对于传统的谱减法,在几乎不损伤语音清晰度的前提下该算法能更好地抑制残留噪声和背景噪声,特别是对低信噪比和非平稳噪声干扰的语音信号,效果更加明显。 In low Signal to Noise Ratio (SNR) environment, the trade-off among the amount of noise reduction, the level of musical residual noise and the speech distortion was the key problem of spectral subtraction speech enhancement. An improved speech enhancement algorithm for low SNR was developed in order to decrease the interference of noise on pure speech. This algorithm was based on the traditional spectral subtraction, and the subtraction parameter was self-adaptively adjusted in the light of the masking properties of human auditory. The speech-presence probability was integrated to estimate the signal and noise, which would avoid the inaccuracy of utilizing Voice Activity Detection (VAD), and increase the robustness. The experimental results demonstrate that this algorithm is effective to reduce the residual noise and the background noise, but not to distort the speech articulation compared to other modified spectral subtraction algorithms, especially for the low SNR noisy speech signal and that being degraded by non-stationary noise.
出处 《计算机应用》 CSCD 北大核心 2008年第11期2981-2983,2986,共4页 journal of Computer Applications
基金 上海市自然科学基金资助项目(04ZR14138)
关键词 语音增强 谱减法 语音存在概率 听觉掩蔽特性 speech enhancement, spectral subtraction speech-presence probability auditory masking property
  • 相关文献

参考文献19

  • 1SUNDARRIAJAN R, LOIZOU P C. A noise-estimation algorithm for highly non-stationary environments [ J]. Speech Communication, 2006, (48) : 220 - 231.
  • 2MCACLAY R J, MALPASS M L. Speech enhancement using a softdecision noise suppression filter[ J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1980, 28(2): 137 -145.
  • 3COHEN I. On speech enhancement under signal presence uncertainty[ C]// Proceedings of the 26th IEEE International Conference on Acoustics, Speech, and Signal Processing: ICASSP200K Washington, DC: IEEE Computer Society, 2001:167 - 170.
  • 4COHEN I. Optimal speech enhancement under signal presence uncertainty using log-spectral amplitude estimator[ J]. IEEE Signal Processing Letters, 2002, 9(4) : 113 - 116.
  • 5COHEN I. Noise speetrum estimation in adverse environments: improved minima controlled reeursive averaging[ J]. IEEE Transactions on Speech and Audio Processing, 2003, 11 (5) : 466 - 475.
  • 6MARTIN R. Noise power spectral density estimation based on optimal smoothing and minimum statistics [ J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 2001,9(5):504-512.
  • 7MALAH D, COX R V, ACCARDI A J. Tracking speech-presence uncertainty to improve speech enhancement in non-stationary noise environment[ C]// Proceedings of the 24th IEEE International Conference on Acoustics, Speech and Signal Processing: ICASSP 1999. Washington, DC: IEEE Computer Society, 1999:789 -792.
  • 8CHOI M S, KANG H G. An improved estimation of a priori speech absence probability for speech enhancement: in perspective of speech absence probability[ C]// Proceedings of the 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing: ICASSP 2005. Washington, DC: IEEE Computer Society, 2005: 1117-1120.
  • 9PAINTER T. SPAN1AS A. Perceptual coding of digital audio[ J]. Proceedings of IEEE, 2000, 88{ 4) : 451 - 512.
  • 10REIBMAN A R, NOLTE L W. Design and performance comparison of distributed detection networks[ J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23(6):789 -797.

二级参考文献14

  • 1[1]BOLL S F.Suppression of acoustic noise in speech using spectral subtraction[J].IEEE Trans Acoustic, Speech, Signal Processing, 1979, 27(2):113-120.
  • 2[2]EPHRAIM Y, MALAH D. Speech enhancement using a minimum mean square error short time spectral amplitude estimator[J]. IEEE Trans Acoustic, Speech, Signal Processing, 1984, 32(6):1109-1121.
  • 3[3]TSOUKALAS D E, MOURJOPOULOS J N ,KOKKINAKIS G.Speech enhancement based on audible noise suppression[J]. IEEE Trans Speech and Audio Process, 1999, 7(3):497-514.
  • 4[4]SOON L Y, KOH S N. Low distortion speech enhancement[J]. IEEE Proc Vis Image Signal Processing, 2000, 147(3):247-250.
  • 5[5]TSOUKALAS D, PARASKEVAS M ,MOURJOPOULOS J, Speech enhancement using psycho-acoustic criteria[A]. Proc IEEE ICASSP 1993[C].Minneapolis, 1993.359-361.
  • 6[6]SINHA D, TEWFIK A H.Low bit rate transparent audio compression using adapted wavelets [J].IEEE Trans Signal Processing, 1993, 41(12):3463-3479.
  • 7[7]JOHNSTON J D. Transform coding of audio signal using perceptual noise criteria[J]. IEEE JSelect Areas Commun,1988,6(2):314-323.
  • 8Boll S.A spectral subtraction algorithm for suppression of acoustic noise in speech[C]∥ IEEE Trans Acoustic,Speech,Signal Processing.Washington,1979,ASSP-27(4):200-203.
  • 9Berouti M,Schwartz R,Makhoul J.Enhancement of speech corrupted by acoustic noise[C]∥ IEEE Trans Acoustic,Speech,Signal Processing.Washington,1979,ASSP-27(4):208-211.
  • 10Wang D L,Lim J S.The unimportance of phase in speech enhancement[J].IEEE Trans Acoustic,Speech,Signal Processing,1982,ASSP-30:679681.

共引文献20

同被引文献22

  • 1孙炯宁,傅德胜,徐永华.基于熵和能量的语音端点检测算法[J].计算机工程与设计,2005,26(12):3429-3431. 被引量:4
  • 2张鹏,张艳宁,付中华,张亚娟.基于MMSE-LSA语音增强算法在非平稳环境下的研究与实现[J].计算机工程与设计,2007,28(19):4695-4697. 被引量:6
  • 3WANG L, KITAOKA N, NAKAGAWA S. Analysis of effect of compensation parameter estimation for CMN on speech/speaker recognition[C]//Proceedings of ISSPA 2007. Sharjah: IEEE, 2007 : 1-4.
  • 4HU Yi, LOIZOU P C. A generalized subspace ap- proach for enhancing speech corrupted by colored noise [J]. IEEE Trans on Speech and Audio Processing, 2003,11 (4) : 334-341.
  • 5KIM H K, ROSE R C. Cepstrum-domain model com- bination based on decomposition of speech and noise u- sing MMSE-LSA for ASR in noisy environments[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2009,17(4) : 704-713.
  • 6CHANG Hong, YEUNG D, XIONG Yimin. Super- resolution through neighbor embedding [ C]//IEEE Conference on Computer Vision Pattern Recogni- tion. Washington DC: IEEE Computer Society, 2004: 275-282.
  • 7GONG Linyu,CHEN Changxing,CHEN Qi, et al. An improved LSA-MMSE speech enhancement approach based on auditory perception[C]//Future Information Technology Management Engineering,2008.Leices- tershire: IEEE Computer Society, 2008:292-295.
  • 8GERKMANN T, KRAWCZYK M, MARTIN R, et al. Speech presence probability estimation based on tem- poral cepstrum smoothing [C]//IEEE International Conference on Acoustics Speech Signal Processing. Dallas TX:IEEE, 2010:4254-4257.
  • 9FU Zhonghua,WANG Jhingfa.Speeeh presence proba- bility estimation based on integrated time-frequency minimum tracking for speech enhancement in adverse environments[C]//IEEE International Conference on Acoustics Speech & Signal Processing. Dallas TX: IEEE, 2010:4258-4261.
  • 10COHEN I.Noise spectrum estimation in adverse envi- ronments:Improved minima controlled recursive avera- ging[J]. Speech and Audio Processing, 2003,11 (5) :466-475.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部