期刊文献+

基于混沌搜索的思维进化算法 被引量:8

Mind evaluation algorithm based on chaos searching
下载PDF
导出
摘要 针对思维进化算法中的产生初始种群的盲目随机性和冗余性以及现有搜索方式易陷入局部最优的问题,将混沌优化和思维进化算法结合,提出了一种基于混沌搜索的思维进化算法(Chaos Mind Evaluation Algorithm,CMEA)。该算法在进化的不同阶段引入混沌优化操作,利用混沌的遍历性提高算法的收敛速度,克服了早熟现象,同时利用思维进化算法的记忆特性和当代最优解指导混沌搜索,提高算法的搜索能力。仿真结果表明,与标准思维进化相比,该算法优化能力强,能有效地避免局部收敛,具有更快的收敛速度。 Due to the disadvantages of Simple Mind Evaluation Algorithm(SMEA),such as the generation of the initial population is blind,random and redundant,so it is easy to get into part extremum solution,a mixed optimal algorithm CMEA(Chaos Mind Evaluation Algorithm) is proposed in the paper combining the chaotic optimal algorithm and MEA.In this method,the chaos optimization is introduced in different phase of population evolution.The new algorithm makes use of the ergodicity of chaos to improve the convergence rate and overcome the local convergence.The character of memory and optimum solution of the present generation are used to instruct the chaos search to improve searching efficiency.Simulation results show that the proposed algorithm can remarkably improve optimization performance and avoids local convergence while producing a high convergence rate.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第30期37-39,共3页 Computer Engineering and Applications
基金 山西省自然科学基金No.2008011027-4~~
关键词 思维进化算法 混沌 优化 Mind Evolutionary Algorithm(MEA) chaos optimization
  • 相关文献

参考文献8

二级参考文献37

  • 1张春慨,王亚英,李霄峰,邵惠鹤.混沌在实数编码遗传算法中的应用[J].上海交通大学学报,2000,34(12):1658-1660. 被引量:9
  • 2张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策,2005,20(2):170-173. 被引量:59
  • 3Dorigo M,Maniezzo V,Colorni A.The ant system:Optimization by a colony of cooperating agents[J].IEEE Trans on SMC,1996;26(1):28~41
  • 4Xie Keming, Mou Changhua ,Xie Gang. A MEA-based adaptive fuzzy logic controller [C]. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation, 21st Century Technologies and Industrial Opportunities, Nagoya, Japan,2000:1492
  • 5XIE Keming,Mou Changhua,Xie Gang. The multi-parameter combination mind-evolutionary-based machine learning and its application [C]. Proceedings of 2000 IEEE International Conference on Systems, Man, and Cybernetics (SMC2000) ,Tennessee, USA,2000:183-187.
  • 6J Kennedy,R Eberhart.Particle swarm optimization[C].In:EEE International Conference on Neural Networks, 1995:1942-1948.
  • 7J Kennedy, R Eberhart.A new optimizer using particle swarm theory [C].In:Proceeding sixth International Symposium on Micro Machine and Human Science, 1995:39-43.
  • 8R Eberhart, Y Shi.Particle swarm optimization: developments, applications and resources[C].In:Proceedings of the 2001 Congress on Evolutionary Computation,2001:81-86.
  • 9Y Shi ,R Eberhart.Empirical study of particle swarm optimization[C]. In:Proceedings of the 1999 Congress on Evolutionary Computation, 1999:1945-1950.
  • 10Y Shi, R Eberhart.A modified particle swarm optimizer[C].In:IEEE International Conference on Evolutionary Computation,1998:69-73.

共引文献126

同被引文献65

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部