期刊文献+

减少速度更新频率的混沌粒子群算法

Computation method for chaos particle swarm optimization based on relaxation velocity update frequency
下载PDF
导出
摘要 把速度更新策略和混沌优化相结合,提出了减少速度更新频率的混沌粒子群算法.该算法根据群体适应值的方差进行早熟收敛判断,从而使算法摆脱后期易于陷入局部最优点的束缚,同时又保持前期优秀的搜索速度的特性.通过几个基准函数测试,结果表明,新算法的性能较基本粒子群优化算法有明显的改善. Combining relaxation velocity update frequency and chaos optimization, a chaos particle swarm optimization was proposed based on relaxation velocity update frequency (CRVUPSO). The algorithm adapts the swarm fitness' variance to implement the prematurity judgment, thus enabling algorithm break away from the shackles of local optimization. Simultaneously, the previous velocity characteristics was saved. Through tests several benchmark function,it is indicated that the performance of the new algorithm has significant improvement than the basic PSO, the search speed is quick, the computational accuracy is high.
出处 《西安工程大学学报》 CAS 2008年第4期513-516,共4页 Journal of Xi’an Polytechnic University
基金 渭南师范学院科研基金资助项目(08YKS021)
关键词 粒子群 进化计算 混沌优化 速度更新策略 particle swarm optimization evolutionary computation chaos optimization velocity update frequency
  • 相关文献

参考文献12

  • 1[1]KENNEDY,EBERHART R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Piscataway,NJ,1995:1 942-1 948.
  • 2[2]EBERHART R C,KENNEDY J.A new optimizer using particle swarm theory[C]//Proc the Sixth Int Symposium on Micro Machine and Human Science.Nagoya,Japan:IEEE Service Center,1995:39-43.
  • 3[3]EBERHART R C,SHI Y.Particle swarm optimization:developments,applications and resources[C]//Proc 2001 Congress on Evolutionary Computation.Seoul,South Korea:IEEE Service Center,2001:81-86.
  • 4[4]LU W Z,FAN H Y,LO S M.Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong[J].Neuro computing,2003,51(1):387-400.
  • 5[5]EBERHART R C,SHI Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proc IEEE Int Conf on Evolutionary computation.La Jolla,2000:84-88.
  • 6[6]CLERC M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of the 1999 Conference on Evolutionary Computation.Washington D C.Piscataway,NJ:IEEE Service Center,1999.
  • 7[7]CLERC M,KENNEDY J.The particle swarm -explosion,stability,and convergence in a multidimensional complex space[J].IEEE tractions on Evolutionary Computation,2002,6(1):58-73.
  • 8[8]SHI Yuhui,EBERHART.Empirical study of particle swarm optimization[C]//Proc of the 1999 Congress on Evolutionary Computation.Piscataway,NJ:IEEE press,1999:1 945-1 950.
  • 9[9]EBERHART R,KENNDY J.A new optimizer using particle swarm optimization theory[C]//Proc of the 6 th International Symposium on Micro Machine and Human Science.Nagoya,Japan,1995:39-43.
  • 10[10]Van den Bergh F,ENGELBRECHT A P.Training product unit networks using cooperative particle swarm optimizers[C]//Proc of the 3rd Genetic and Evolutionary Computation Conference (CECCO),San Francisco,USA,2001.

二级参考文献1

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.

共引文献450

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部