期刊文献+

带有交错扩散的捕食模型的非常数正解的存在性 被引量:1

The Existence of Non-constant Positive Steady-state Solutions for a Prey-predator Model with Cross-diffusion
下载PDF
导出
摘要 研究了一类带交错扩散的捕食模型稳态问题非常数正解的存在性.证明了猎物的自扩散率较大或者交错扩散率较大的时候,强耦合系统至少存在一个非常数正解. This paper deals with the existence of non - constant positive steady - state solutions for the steady state problem of a predator - prey model with cross - diffusion. It is proved that the strongly coupled prey- predator system has at least one non - constant positive solution if the self - diffusion of predator or cross- diffusion is large enough.
作者 任丽萍
出处 《广西师范学院学报(自然科学版)》 2008年第3期30-35,72,共7页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 徐州建筑学院基金项目(JYA3-18)
关键词 交错扩散 Holling-Ⅲ型函数响应项 捕食模型 非常数正解 cross - diffusion Holling type Ⅲ functional response predator - prey model existence of non- constant positive solution
  • 相关文献

参考文献12

  • 1NI W M. Diffusion, cross- diffusion and their spike- layer steady states[J ]. Notices Amer Math Soc, 1998, 45 (1) :9- 18.
  • 2OKUBO A. Diffusion and Ecological Problems: Mathematical Models[M]. Berlin: Springer- verlag, 1980.
  • 3PANG P Y H, WANG M X. Qualitative analysis of the variable- territory prey - predator model[J], inpress.
  • 4LIN C S, NI W M, TAKAGI I. Large amplitude stationdary solutions to a chemotaxis system [J ]. Differential Equations, 1998, (72) : 1-27.
  • 5LOU Y, NI W M. Diffusion, self-diffusion and cross-diffusion[J]. Differential Equations, 1996, 131:79-131.
  • 6PANG P Y H, WANG M X. Qualitative analysis of a ratio- dependent predator- prey system with diffusion[J ]. Proc R Soc Edinburgh A, 2003, 133(4) : 919-942.
  • 7PANG P Y H, WANG M X. Non - constant positive steady states of a predator- prey system with non - monotonic functional response and diffusion[J]. Proc Lond Math Soc, 2004,88(3): 135-157.
  • 8PENG R, WANG M X. Positive steady states of the Holling- Tanner prey- predator model with diffusion[J]. Proc Roy Soc Edinburgh Sect A, 2005, 135(1) : 149-164.
  • 9NIRENBERG L. Topics in Nonlinear Functional Analysis[M]. Providence: Amer Math Soc, RI, 2001.
  • 10HENRY D. Geometric theory of semilinear parabolic equations[ C]//Lecture Notes in Mathematics: 840, Berlin: Springer- Verlag, 1993.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部