期刊文献+

Hamilton非二部图的弱泛圈性 被引量:1

A WEAKLY PANCYCLIC THEOREM FOR HAMILTONIAN NON-BIPARTITE GRAPHS
原文传递
导出
摘要 图G称为弱泛圈图是指G包含了每个长为l(g(G)≤l≤c(G))的圈,其中g(G),c(G)分别是G的围长与周长.1997年Brandt提出以下猜想:边数大于[(n^2)/4]-n+5的n阶非二部图为弱泛圈图.1999年Bollobás和Thomason证明了边数不小于[(n^2)/4]-n+59的n阶非二部图为弱泛圈图.作者证明了如下结论:设G是n阶Hamilton非二部图,若G的边数不小于[(n^2)/4]-n+12,则G为弱泛圈图. An n-vertex graph is called weakly pancyclic if it contains cycles of all lengths between its girth and circumference. In 1977, Brandt conjectured that an n-vertex non-bipartite with more than [n^2/4]- n +5 edges is weakly pancyclic. Bollobas and Thomason(1999) graph of order n and size at least [n^2/4]- n+59 is weakly proved that every non-bipartite graph pancyclic. In this paper, the following result is established: let G be a Hamiltonian non- and size at least [n^2/4]-n + 12, then G is weakly paneyclic. bipartite graph of order
出处 《系统科学与数学》 CSCD 北大核心 2008年第10期1288-1296,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10371048)资助项目
关键词 非二部图 HAMILTON图 弱泛圈图. Non-bipartite graph, Hamiltonian graph cycle, weakly pancyclic graph.
  • 相关文献

参考文献10

  • 1Bondy J A and Murty U S R. Graph Theory with Application. London: The Macmillan Press, 1976.
  • 2Bondy J A. Pancyclic graphs. J. Combin Theory, 1971, B(11): 80-84.
  • 3Haggkvist R, Faudree R J and Schelp R H. Pancyclic graphs-connected Ramsey number. Ars Combin, 1981, 11: 37-49.
  • 4Brandt S. A sufficient condition for all short cycles. Discrete Applied Math., 1997, 79: 63-66.
  • 5Bollobas B and Thomason A. Weakly pancyclic graphs. J. Combin Theory, 1999, B(77): 121-137.
  • 6Schmeichel E F and Hakimi S L. A cycle structure theorem for Hamiltonian graph. J. Combin Theory, 1988, B(45): 99-107.
  • 7Ren H. Another cycle structure theorem for Hamiltonian graphs. Discrete Math., 1999, 199: 237-243.
  • 8Jackson B and Wormald N C. Longest cycle in 3-connected planar graphs. J. Combin Theory, 1992, B(54): 291-321.
  • 9Zhang C. Hamilton cycles in claw free graphs. J. Graph Theory, 1988, 12: 209-216.
  • 10Bollobas B. Modern Graph Theory. Beijing: The Press of Science, 2001, 113-114.

同被引文献16

  • 1Li T K.Cycle embedding in star graphs with edge faults[J]. Applied Mathematics and Computation,2005,167:891-900.
  • 2Tewes M.Pancyclic in-tournaments[J].Discrete Mathemat- ics,2001,233:193-204.
  • 3Xu J M.Topological structure and analysis of intercon- nection networks[M].Springer,2002.
  • 4Xu J M,Ma M J.Survey on path and cycle embedding in some networks [J].Frontiers of Mathematics in Chi- na,2009,4(2):217-252.
  • 5Tsai P Y,Chen G H,Fu J S.Edge-fauh-tolerant pancyclic- ity of alternating group graphs [J].Networks,2009,53 (3): 307-313.
  • 6Mao J W.Chang-Biau YangShortest Path Routing and Fault-Tolerant Routing on de Bruijn Networks [J].Net- works,2000,35(3):207-215.
  • 7Araki T.On the k-tuple domination of de Brujin and Kautz digraph[J];Information Processing lettters,2007,104: 86-90.
  • 8Shan E F,Dong Y X,Cheng Y K.The twin domination number in generalized de Brujin digraph[J].Information Processing lettters,2009,109:856-860.
  • 9Bermond J C,Homobono N,Peyrat C.Conneetivity of Kautz networks[J].Diseret Matbematies,1993A14:51-61.
  • 10Liu J,Sun L, Meng J X.A line digraph of a complete bipartite digraph[J].Apptied Mathematics Letters,2009,22 (4):544-547.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部