期刊文献+

由钨合金的两相参数计算其宏观抗拉强度

Calculation of Macro-tensile Strength with Two Phase Parameters for Tungsten Alloy
下载PDF
导出
摘要 钨合金是由钨颗粒相和基体组成的两相材料。利用Eshelby方程和Mori-Tanaka平均应力概念以及本文给出的增量法,可由钨颗粒相的形状、体积份数及两相力学性能参数计算得到钨合金材料的宏观抗拉强度。文内对特定钨合金进行了计算分析。分析表明,随工艺处理变形量的增加,钨合金材料的脆性增加,对于工艺处理变形量较小的钨合金,首先在基体相中达到拉伸破坏;而对于工艺处理变形量较大的钨合金,首先在钨颗粒相中达到拉伸破坏。本文对钨合金材料宏观抗拉强度的计算结果与试验结果一致。 Tungsten alloy is a bi-phase material composed of tungsten grain and matrix phases. The macro tensile strength of tungsten alloy was obtained according to the shape and the volume fraction of W-phase and the mechanical parameters of the two phases by using the Eshelby equations, Mori-Tanaka concept of average stress and the incremental method which was proposed in this paper. A special tungsten alloy was analyzed and the results show that the brittleness of the tungsten alloy increases with the increment of the amount of deformation in the metallurgy processing; the tensile failure is of first occurrence in the matrix phase of the tungsten alloy for smaller amount of deformation in the metallurgy processing and in the W-phase of the tungsten alloy for larger amount of deformation in the metallurgy processing. The computational results for the tensile strength of the tungsten alloy are in accordance with that of experiments.
出处 《兵工学报》 EI CAS CSCD 北大核心 2008年第10期1232-1236,共5页 Acta Armamentarii
关键词 固体力学 钨合金 钨颗粒相 基体相 宏观抗拉强度 solid mechanics tungsten alloy tungsten grain matrix phase macro-tensile strength
  • 相关文献

参考文献8

  • 1Bose A, Yang S C, German R M. Development of new W-Ni-Mn heavy alloy[J]. Advanced in Powder Metallurgy, 1991, 6(6) ; 425 - 437.
  • 2Ekbom L. Microstructure study of the deformation behavior of a sintered tungsten-base composite [ J ]. Modern Developments in Powder Metallurgy, 1981, 14(1 ) : 177 - 188.
  • 3Tanaka K, Mori T. Hardening of crystals by non-deforming partides and fibres[ J ]. Acta Metallurgica, 1970, 18 (8) : 931 - 941.
  • 4Tanaka K, Wakashima K, Mori T. Plastic deformation anisotropy and work-hardening of composite materials[J]. Journal of the Mechanics and Physics of Solids, 1973, 21 (4): 207- 214.
  • 5Roatta A, Bolmaro R E. Eshelby inclusion based model for the study of stresses and plastic strain localization in metal matrix composites: Ⅰ general formulation and its application to round particles[J]. Mater Sci Eng, 1997, A299(1-2) : 182- 191.
  • 6Roatta A, Bolmaro R E. Eshelby inclusion based model for the study of stresses and plastic strain localization in metal matrix composites: Ⅱ. fiber reinforcement and lamellar inclusions[J ]. Mater Sci Eng, 1997, A299(1-2) : 192 - 202.
  • 7Kato M, Fuji T, Ouaka S. Effects of shape and volume fraction of second phase on stress states in two-phase materials[J ]. Mater Sci Eng, 2000, A285(2): 144-150.
  • 8宋顺成,刘筱玲,史洪刚,尚福军.钨合金细观参数对其宏观屈服强度的影响[J].材料科学与工艺,2007,15(5):697-700. 被引量:1

二级参考文献6

  • 1EKBOM L.Microstructure study of the deformation behavior of sintered tungsten base composite[A].HAUANER H H,et al.Modern Developments in Powder Metallurgy 14[C].Princeton:Academic Press,1981:177-188.
  • 2TANAKA K,MORI T.Hardening of crystals by non-deforming particles and fibres[J].Acta Metallurgica,1970,18(8),931-941.
  • 3TANAKA K,WAKASHIMA K,MORI T.Plastic deformation anisotropy and work-hardening of composite materials[J].Journal of the Mechanics and Physics of Solids,1973,21(4),207-214.
  • 4ROATTA A,BOLMARO R E.Eshelby inclusion based model for the study of stresses and plastic strain localization in metal matrix composites:Ⅰ.General formulation and its application to round particles[J].Mater.Sci.Eng.,1997,A299(1/2),182-191.
  • 5ROATTA A,BOLMARO R E.Eshelby inclusion based model for the study of stresses and plastic strain localization in metal matrix composites:Ⅱ.Fiber reinforcement and lamellar inclusions[J].Mater.Sci.Eng.,1997,A299(1/2),192-202.
  • 6KATO M,FUJJ T,OUAKA S.Effects of shape and volume fraction of second phase on stress states in twophase Materials[J].Mater.Sci.Eng.,2000,A285(2),144-150.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部