期刊文献+

基于多路延迟结构的频率估计新算法研究

Research on a New Algorithm for Frequency Estimation Based on Multi-path Delay Structure
下载PDF
导出
摘要 针对多路延迟数字测频结构,提出了基于多级维纳滤波(MSWF)的MUSIC频率估计方法。该方法利用MSWF的前向递推的多级分解特性来实现信号子空间和噪声子空间的快速估计,不需要估计协方差矩阵和对其作特征值分解,所以运算复杂度可以明显降低,并且子空间估计性能与常规方法几乎一样。最后在子空间分解的基础上,通过MUSIC算法对其频率估计性能进行比较。仿真结果表明MSWF-MUSIC算法和常规子空间分解MUSIC算法具有几乎一样的频率估计精度;但本文算法降低了计算量和复杂度,更易于信号的实时处理;随信噪比或快拍数的增加,两算法的频率估计误差都越来越趋近于Cramer-Rao界。 To consider the digital frequency measurement structure of multi-path delay, a MUSIC frequency estimation algorithm based on the multi-stage Wiener filter (MSWF) was presented. The method can get signal subspace and noise subspace quickly by using multi-decomposition of the forward recursions of the MSWF, which does not require the formation of the covariance matrix and its eigenvalue decomposition, to reduce the computational complexity significantly. The novel approach can achieve such subspace estimation performance as that of the classical method. On the basis of subspace decomposition, the frequency estimation performance of MSWF-MUSIC algorithm was compared with that of MUSIC one of the classical method by the simulation. The simulated results show that both algorithms have almost the same frequency estimation accuracy; the computational amount and its complexity are decreased significantly to process the signal real time and easily; with the increment of SNR of snapshot, the frequency estimation mean square errors of both algorithms approach to Cramer-Rao boundary more and more.
出处 《兵工学报》 EI CAS CSCD 北大核心 2008年第10期1262-1266,共5页 Acta Armamentarii
基金 国家高技术研究发展计划资助项目(2006AA701408)
关键词 信息处理技术 频率估计 多级维纳滤波 特征值分解 估计精度 information processing frequency estimation multi-stage Wiener filter eigenvalue decomposition estimation accuracy
  • 相关文献

参考文献13

  • 1Juha T K, Jyrki J. SinusoidaI frequency estimation by signal subspace approximation[J ]. IEEE Trans on Signal Processing, 1992, 40(12) :2961 -2972.
  • 2Shahin H K, Capolino G A. Zoom-MUSIC frequency estimation method for three-phase induction machine fault detection [ C]. Proc ICIES, North Carolina, 2005 : 2597 - 2602.
  • 3唐斌,熊英,肖先赐.基于高阶统计的欠采样多信号频率估计[J].仪器仪表学报,1999,20(3):229-231. 被引量:3
  • 4Kaveh M, Barabell A J. The statistical performance of the MUSIC and the minimum-norm algorithm in resolving plane waves in noise[J]. IEEE Trans on ASSP, 1986, 34:331 - 341.
  • 5Rao B D, Harik V S. Performance analysis of root-MUSIC[J ]. IEEE Trans on ASSP, 1989, 37(8) : 1789 - 1794.
  • 6Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Trans On ASSP, 1989, 37(5) : 720 - 740.
  • 7Goldstein J S, Reed I S, Scharf L. A multistage representation of the wiener filter based on orthogonal projections[J]. IEEE Trans on Information Theory, 1998, 44(7) :2943 - 2959.
  • 8Gotdstein J S, Reed I S. Reduced rank adaptive filtering [J ]. IEEE Trans on Signal Processing, 1997, 45(2) : 492 - 496.
  • 9Ricks D, Goldstein J S. Efficient implementation of multi-stage adaptive Weiner filters[C]. Antenna Applications Symposium, Allenton Park, IL, USA, 2000: 29-41.
  • 10Huang L, Wu S, Feng D, Zhang L. Low complexity method for signal subspace fittlng[J]. IEE Electronics Letters, 2004, 40 (14): 847-848.

二级参考文献17

  • 1唐斌.空间信号多维参数估计方法研究:博士学位论文[M].电子科技大学,1996..
  • 2唐斌,电子科学学刊,1997年,19卷,10期,619页
  • 3唐斌,博士学位论文,1996年
  • 4Schmidt R O. A Signal Subspace Approach To Multiple Emitter Location Spectral Estimation[D]. Stanford, CA: Stanford Univ, 1981.
  • 5Ray R, Kailath T. ESPRIT-estimation of signal paxameters via rotational invariance techniques[J]. IEEE Trans ASSP, 1989,37(7):948-955.
  • 6Viberg M, Otterstem B. Sensor array processing based on subspace fitting[J]. IEEE Trans Signal Processing, 1991,39(5):1110-1121.
  • 7Goldstein J S, Reed I S, Scharf L L. A multistage representation of the wiener filter based on orthogonal projections[J]. IEEE. Trans Information Theory, 1998,44(7):2943-2959.
  • 8Hotening H. Analysis of a complex of statistical variables into principal components[J].J Educ Psychol, 1933,24:417-441;498-520.
  • 9Goldstein J S, Reed I S. Reduced rank adaptive filtering[J]. IEEE Trans Signal Processing, 1997,45:492-496.
  • 10Goldstein J S,Reed I S,P A Zulch. Multistage partially adaptive STAP CFAR detection algorithm [J]. IEEE Tram Aerospace and Electranic Systeras, 1999,35(2):645-661.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部