期刊文献+

SOM网络离散化法用于复杂可修系统维修决策研究 被引量:1

On Maintenance Decision-making of a Complex Repairable System By an SOM-based Discretization Method
下载PDF
导出
摘要 采用变精度粗糙集理论挖掘系统状态信息与各单元性能参数的内在关系是解决复杂可修系统维修决策问题的一种客观量化方法。鉴于该类方法对连续型数据进行离散化处理过程中普遍存在的问题,本文提出了一种SOM网络离散化方法,采用该方法能够有效地解决断点设置的难题,并相应提高了该决策算法的精度。以CF6型航空发动机为例,应用该方法得到了用于判断发动机单元体维修等级、可信度较高的决策规则,从而为发动机工程师制订维修决策提供了重要的依据。 We study the maintenance decision-making of a complex repairable system by using variable precision rough set (VPRS) theory to determine the relation between condition information and performance parameters of a system. We present a discretization method based on an SOM ( Serf-Organizing Maps) network after considering the discretization problem for continuous data. The problem of confirming thresholds is effectively solved by this meth- od. CF6 aero-engine is taken as an example for case study to produce some decision rules by using the method. These decision rules supply an important evidence for aero-engine engineers to decide its modules for a proper maintenance level.
出处 《机械科学与技术》 CSCD 北大核心 2008年第10期1132-1135,共4页 Mechanical Science and Technology for Aerospace Engineering
关键词 复杂可修系统 变精度粗糙集 SOM网络 离散化 维修决策 complex repairable system VPRS SOM discretization maintenance decision-making
  • 相关文献

参考文献11

  • 1董立新,肖登明,王俏华,吕干云,刘奕路.模糊粗糙集数据挖掘方法在电力变压器故障诊断中的应用研究——基于油中溶解气体的分析诊断[J].电力系统及其自动化学报,2004,16(5):1-4. 被引量:10
  • 2Chao T S, Hsu J H. Precision parameter in the variable precision rough sets model: an application [ J ]. The International Journal of Management Science, 2004,8 : 1 - 9
  • 3Mi J S, Wu W Z, Zhang W X, Approaches to knowledge reduction based on variable precision rough set model[J], Information Sciences, 2004,159:255 - 272
  • 4黄金杰,李士勇.一种基于粗糙集的决策规则综合方法[J].电机与控制学报,2003,7(3):242-247. 被引量:4
  • 5Pawlak Z. Rough sets and intelligent data analysis[ J]. International Journal of Information Sciences, 2002,147:1 -12
  • 6Zhang H J, et al. Maintenance level decision of acre-engine based on VPRS thcory[J]. Transactions of NanJing University of Aeronautics & Astronautics, 2005,22(4 )
  • 7Huang J J, Li S Y. A GA-based approach to rough data model [ A]. Proceedings of the 5th World Congress on Intelligent Control and Automation[ C ], Hangzhou, 2004:1880 - 1884
  • 8Roy A, Pal S K. Fuzzy discretization of feature space for a rough set classier[J]. Pattern Recognition Letters, 2003,24(6)
  • 9Kohonen T. The self-organizing map[J]. Neurocomputing, 1998,21:1 -6
  • 10RICHARD J.ROIGER,MICHAEL W.GEATZ.著.翁敬农译.数据挖掘教程[M].北京:清华大学出版社,2003.

二级参考文献24

  • 1郝丽娜,徐心和.粗糙集理论在故障诊断规则获取中的应用[J].信息与控制,2001,30(S1):586-590. 被引量:7
  • 2PAWLAK Z. Rough sets-theoretical aspects of reasoning about data[M]. Doredrcht: Kluwer Academic Publishers, 1991.
  • 3PAWLAK Z. Rough sets and intelligent data analysis [J]. International Journal of Information Sciences, 2002, 147, (Issue: 1-4), 1-12.
  • 4SLOWINSKI R. Rough set approach to decision analysis [J]. AI Expert, 1995, 10(3):19-25.
  • 5SKOWRON A, POLKOWSKI L. Synthesis of decision systems from data tables [A]. Rough Sets and Data Mining [C]. Boston: Kluwer Academic Publishers, 1997. 259-299.
  • 6SKOWRON A, RAUSZER C. The discernibility matrices and functions in information systems[A]. Intelligent Decision Support-Handbook of Applications and Advances of the Rough Sets Theory [C]. Dordrecht: Kluwer Academic Publishers, 1992. 331-362.
  • 7WROBLEWSKI J. Finding minimal reducts using genetic algorithms[A]. Proceedinos of the International Workshop on Rouoh Sets Computino at Second Annual Joint Conference on Information Sciences(JCIS' 95) [C]. Wrightsville Beach, North Carolina: Springer Verlag, 1995. 186-189.
  • 8SKOWRON A. Synthesis of adaptive decision systems from experimental data[A]. Proc Fifth Scandinavian Conference on Artificial in Telligence (SCAI' 95)[C].Jrondheim, Norway, Amsterdan:IOS Press, 1995. 220-238.
  • 9BAZAN J. A comparison of dynamic non-dynamic rough set methods for extracting laws from decision tables [A]. Rough Sets in Knowledge Discovery 1: Methodology and Applications [C]. Heidelberg: Physica-Verlag, 1998. 321-365.
  • 10汪冰生.[D].南京:南京航空航天大学,2002.

共引文献32

同被引文献11

  • 1Roiger R J,Geatz M W.数据挖掘教程[M].翁敬农,译.北京:清华大学出版社,2003.
  • 2GETHSIYAL AUGASTA M, KATHIRVALAVAKUMAR T. A new discretization algorithm based on range coefficient of dispersion and skewers for neural networks classifier [ J]. Applied Soft Computing, 2012, 12(2): 619-625.
  • 3WONG T-T. A hybrid discretization method for naive Bayesian c/as- sifiers [ J]. Pattern Recognition, 2012, 45(6) : 2321 - 2325.
  • 4HUANG W, PAN Y, WU J. Supervised discretization with GK-t [ J]. Procedia Computer Science, 2013, 17:114 -120.
  • 5FERREIRA A J, FERREIRA A J. An unsupervised approach to feature discretization and selection [J]. Pattern Recognition, 2012, 45(9): 3048 -3060.
  • 6GUPTA A, MEHROTRAB K G, MOHANB C. A clustering-based discretization for supervised learning [ J]. Statistics and Probability Letters, 2010, 80(9): 816-824.
  • 7CHEN S, TANG L, LIU W, et al. An improved method of disereti- zation of continuous attributes [ J]. Procedia Environmental Sci- ences, 2011, 11(A) : 213 -217.
  • 8MONTALVAO J, CANUTOB J. Clustering ensembles and space dis- cretizatiou--a new regard toward diversity and consensus [ J]. Pat- tern Recognition Letters, 2010, 15(1) : 2415 -2424.
  • 9GHASEMINEZHAD M H, KARAMI A. A novel Self-Organizing Map (SON) neural network for discrete groups of data clustering [J]. Applied Soft Computing, 2011, 11(4): 3771 -3778.
  • 10花海洋,赵怀慈.一种新的无监督连续属性离散化方法[J].计算机工程与应用,2011,47(6):208-211. 被引量:10

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部