期刊文献+

置氢对Ti6Al4V合金微观组织和硬度的影响 被引量:3

Influence of Hydrogenation on Microstructure and Hardness of Ti6Al4V Alloy
下载PDF
导出
摘要 利用光学显微镜、X射线衍射和透射电镜研究了Ti6Al4V合金置氢后的微观组织变化,分析了氢化物的形成机制,通过硬度测试分析了置氢对Ti6Al4V合金硬度的影响。研究结果表明:置氢可以显著降低(α+β)/β转变温度,置氢后的组织中存在斜方结构的马氏体α"和面心立方结构的氢化物δ,氢化物δ不仅可以从α相内析出,还可以从β相析出。文章认为,δ在α相内的形成过程是基于氢元素扩散的相变过程,而β相内的δ是共析反应βH→α+δ的产物。硬度测试的结果显示:随着氢含量的增加,Ti6Al4V合金的硬度增加,这是氢化物析出强化、氢固溶强化、氢与位错的相互作用以及马氏体转变综合作用的结果。 Microstructure variation of Ti6Al4V alloy after hydrogenation was investigated by optical microscopy (OM), X-ray diffraction (XRD) and transmission electron microscopy (TEM), and the formation mechanism of hydride was discussed. The influence of hydrogen content on hardness of Ti6Al4V alloy was studied by hardness testing. The result shows that hydrogen could reduce (α+β)/β transformation temperature obviously. Hydride δ (fcc structure) as well as orthorhombic martensite α″ precipitated in the specimens after hydrogenation, and hydrides precipitated not only from α phase but also from β phase. It is considered in this paper that the formation of δ in a phase is α phase transformation based on the diffusion of hydrogen, and the formation of δ in β phase is the result of eutectoid reaction βH→α+δ The result of hardness testing shows that the hardness of Ti6Al4V alloy increases after hydrogenation, which is caused by formation of hydrides, hydrogen solution strengthening, interaction between hydrogen and dislocation and martensitic transformation jointly with increasing of hydrogen.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2008年第10期1795-1799,共5页 Rare Metal Materials and Engineering
基金 国家安全重大基础研究项目
关键词 置氢 TI6AL4V合金 δ氢化物 硬度 hydrogenation Ti6Al4V alloy δ hydride hardness
  • 相关文献

参考文献6

  • 1侯红亮,李志强,王亚军,关桥.钛合金热氢处理技术及其应用前景[J].中国有色金属学报,2003,13(3):533-549. 被引量:125
  • 2Gong Bo(宫波). Hydrogen Deduced Phase Transformation of Titanium and Titanium Alloys and lts Applications(氢致钛和钛合金的相变组织转变及其应用)[D].Shenyang:NortheastUniversity,1992
  • 3苏彦庆,骆良顺,郭景杰,贾均,傅恒志.Ti6Al4V合金渗氢氢化组织及氢脆机制的研究[J].稀有金属材料与工程,2005,34(4):526-530. 被引量:14
  • 4Shan D B, Zong Y Y. Journal of Alloys Compounds [J], 2007, (427): 229
  • 5Barrett C S, Massalaki T B. Translated by Tao Kun(陶琨)et al.Structure of Metals(金属的结构)[M].Beijing:Metallurgical Industry Press, 1987:158
  • 6Zhu Wuyang(褚武扬).Hydrogen Damage and Retarded Rupture(氢损伤和滞后断裂)[D].Beijing:Metallurgical Industry Press,1988:98

二级参考文献9

  • 1Nakahigashi J, Yoshimura H. Ultra-Fine Grain Refinement and Tensile Properties of Titanium Alloys Obtained through Protium Teatment[J]. J Alloys Comp, 2002, 330~332:384~388.
  • 2Eliezer D, Eliaz N, Senkov O N et al. Positive Effects of Hydrogen in Metals[J]. Mater Sci Eng, 2000, A280:220~224.
  • 3Zhang Shaoqing, Zhao Linruo. Effect of Hydrogen on the Superplasticity and Microstructure of Ti-6Al-4V Alloys[J]. J Alloys Comp, 1995, 218:233~236.
  • 4Shih D S, Birnbaum H K. Evidence of fcc Titanium Hydride Formation in β Titanium Alloy:An X-Ray Diffraction Study [J].Scripta Metall, 1986, 20:1 261~1 264.
  • 5Gu J, Hardie D. Effect of Hydrogen on Structure and Slow Strain Rate Embrittlement of Mill Annealed Ti6Al4V[J].Mater Sci Technol, 1996, 12:802~807.
  • 6Qazi J I, Senkov O N, Rahim J et al. Phase Transformation in Ti-6Al-4V-xH Alloys[J]. Metall Trans, 2001, 32A: 2 453~2 463.
  • 7Xiao H Z. On the Mechanism of Hydride Formation in a-Ti Alloys[J]. Scripta Metall, 1992, 27:571~576.
  • 8GONG Bo LAI Zuhan Northeast University of Technology,Shenyang,ChinaNIINOMI Mitsuo,KOBA YASHI Toshiro Toyohashi University of Technology,Toyohashi Japan Department of Physics,Northeast University of Technology,Shenyang 110006,China.IMPROVEMENT IN TENSILE PROPERTIES OF α+β TYPE Ti ALLOYS BY HYDROGEN TREATMENT[J].Acta Metallurgica Sinica(English Letters),1993,6(2):121-124. 被引量:6
  • 9何晓,沈保罗,曹建玲,邱绍宇,邹红.氢对两种新型钛合金强度和塑性的影响[J].稀有金属材料与工程,2003,32(5):390-393. 被引量:11

共引文献133

同被引文献35

  • 1苏彦庆,骆良顺,毕维升,丁宏升,郭景杰,贾均,傅恒志.置氢对Ti6Al4V合金室温组织的影响[J].材料科学与工艺,2005,13(1):103-107. 被引量:21
  • 2付艳艳,宋月清,惠松骁,米绪军.航空用钛合金的研究与应用进展[J].稀有金属,2006,30(6):850-856. 被引量:181
  • 3Mishra R S, Ma Z Y. Mater Sci Eng R[J], 2005, 50 (1-2): 1.
  • 4Nandan R, DebRoy T, Bhadeshia H. Prog Mater Sci[J], 2008, 53 (6): 980.
  • 5Threadgill P L, Leonard A J, Shercliff H R et al. Int Mater Rev[J], 2009, 54 (2): 49.
  • 6Lienert T J, Stellwag W L, Grimmett B Bet al. Weld J[J], 2003, 82 (1): 1.
  • 7Gan W, Li Z T, Khurana S. Sci Technol Weld Join[J], 2007, 12 (7): 610.
  • 8Bhadeshia H, DebRoy T. Sci Technol Weld Join[J], 2009, 14 (3): 193.
  • 9McQuillan A D. Proc R Soc London Ser A [J], 1951,204:309.
  • 10Lenning G A, Craighead C M, Jaffee R I. Trans A/ME[J], 1954, 200:367.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部