期刊文献+

基于贝叶斯网络的一种牛奶产量预测研究 被引量:2

A Study of the Bayesian Network Applied to Milk Output Prediction
下载PDF
导出
摘要 本文运用贝叶斯网络对某农场的牛奶产量进行学习与预测,运用Chi2离散化方法的一种变形进行数据预处理,采用有启发规则指导的、带随机重启的贪心算法搜索网络结构;最后,将贝叶斯网络方法的结果与多元线性回归方法得到的结果进行了比较。 In this paper, the Bayesian network is apphed to learning and predicting the milk output of a farm. In the learning process,a variation of the Chi2 discretization method is used to pre-process the raw data, and the heuristic-rulesguided greedy algorithm with random restart is proposed to search the network structure. Finally, the results yielded by the Bayesian network are con:pared to those by polynomial linear regression.
作者 徐计 张桂芸
出处 《计算机工程与科学》 CSCD 2008年第10期15-18,共4页 Computer Engineering & Science
基金 天津市教委资助项目(20071328) 天津师范大学博士基金资助项目(52LX17)
关键词 贝叶斯网络 Chi2变形 随机重启 贪心算法 线性回归 Bayesian network Chi2 variation random restart greedy algorithm linear regression
  • 相关文献

参考文献11

  • 1Heckerman D,Geiger D, Chickering D M. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data[R]. Technical Report MSR TR-94 09, Microsoft Research, 1994.
  • 2Hekerman D. A Tutorial on I.earning with Bayesian Network[R]. Technical Report MSR-tr-95 06, Microsoft Research, 1996.
  • 3Cheng Jie, Bell D A, Liu Weiru. l.earning Belief Networks from Data: An Information Theory Based Approach [C]// Proc of the 6th Int'l Conf on Information and Knowledge Management, 1997 : 325-331.
  • 4Cheng J, Bell D A, Liu W. An Algorithm for Bayesian Belief Network Construction from Data[C]//Proc of AI & STAT' 97,1997 : 83-90.
  • 5Williams C K I, Feng X. Combining Neural Networks and Belief Networks for Image Segmentation[C]//Proc of IEEE Signal Proc Society Workshop on Neural Networks for Signal Processing, 1998.
  • 6Argamon-Engelson S,Dagan I. Committee-Based Sample Selection for Prohabilistic Classifiers[J]. Journal of Artificial Intelligence Research, 1999,11: 335- 460.
  • 7Blum A,Mitchell T. Comhining Labeled and Unlabeled Data with Co-Training[C]//Proc of the 11th Annual Conf on Computational Learning Theory, 1998: 92-100.
  • 8Amari S. Mathematical Foundations of Neurocomputing[J]. Proceedings of the IEEE,1990,78(9) : 1443-1463.
  • 9Cooper G. Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks(Research note)[J]. Artificial Intelligence, 1990,42 (2,3) : 393-405.
  • 10Chatteriee S, Hadi A S, Price B. Regression Analysis By Example (Third Edition) [M]. John Wiley &. Sons, Inc, 2000.

二级参考文献8

  • 1孙细明,张晓鹏.基于信息熵的决策树算法实现[J].计算机与数字工程,2005,33(11):94-95. 被引量:11
  • 2Liu Huan, Setiono R. Chi2 : Feature Selection and Discretization of Numerie Attributes[A]. Proe of the IEEE 7th Int'l Conf on Tools with Artifieial Intelligenee[C]. 1995.
  • 3Tay F E H. A. Modified Chi2 Algorithm for Diseretization [J]. IEEE Trans on Knowledge and Data Engineering, 2002, 14 (3):666-670.
  • 4Breslow L A,Aha D W. Simplifying Decision Trees:A Survey [J]. Knowledge Engineering Review,1997,12(1): 1-40.
  • 5Witten L H,Frank E.数据挖掘——实用机器学习技术(英文版,第二版)[M].北京:机械工业出版社.2005.
  • 6Bloedom E,Michalski R S. The AQ17-DCI System for DataDriven Constructive Induction and Its Application to the Analysls of World Economics[A]. Proc of the 9th Int'l Syrup on Methodologies for Intelligent Systems[C]. 1996,
  • 7仇春光,刘玉树.自动生成决策树的通用算法模板[J].北京理工大学学报,1999,19(3):338-342. 被引量:5
  • 8李艾华,屈梁生.改进的决策树生成算法及条件决策表的创建[J].西安交通大学学报,1999,33(10):43-47. 被引量:2

共引文献1

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部